Factor Controlled Hierarchical SOM Visualization for Large Set of Data

被引:0
|
作者
Chakma, Junan [1 ]
Umemura, Kyoji [1 ]
机构
[1] Dept. of Information Science, Toyohashi University of Technology, Toyohashi-shi, 441-8580, Japan
关键词
Algorithms - Automata theory - Data reduction - Error analysis - Vectors - Visualization;
D O I
暂无
中图分类号
学科分类号
摘要
Self-organizing map is a widely used tool in high-dimensional data visualization. However, despite its benefits of plotting very high-dimensional data on a low-dimensional grid, browsing and understanding the meaning of a trained map turn to be a difficult task - specially when number of nodes or the size of data increases. Though there are some well-known techniques to visualize SOMs, they mainly deals with cluster boundaries and they fail to consider raw information available in original data in browsing SOMs. In this paper, we propose our Factor controlled Hierarchical SOM that enables us select number of data to train and label a particular map based on a pre-defined factor and provides consistent hierarchical SOM browsing.
引用
收藏
页码:1796 / 1803
相关论文
共 50 条
  • [41] An Improved SOM-based Visualization Technique for DNA Microarray Data Analysis
    Patra, Jagdish C.
    Abraham, Jacob
    Meher, Pramod K.
    Chakraborty, Goutam
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [42] Probabilistic segmentation of volume data for visualization using SOM-PNN classifier
    Ma, F
    Wang, WP
    Tsang, WW
    Tang, ZS
    Xia, SW
    Tong, X
    IEEE SYMPOSIUM ON VOLUME VISUALIZATION, 1998, : 71 - +
  • [43] PPoSOM: A Multidimensional Data Visualization Using Probabilistic Assignment Based on Polar SOM
    Xu, Yang
    Xu, Lu
    Chow, Tommy W. S.
    Fong, Anthony S. S.
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 212 - 220
  • [44] Efficient interpretable variants of online SOM for large dissimilarity data
    Mariette, Jerome
    Olteanu, Madalina
    Villa-Vialaneix, Nathalie
    NEUROCOMPUTING, 2017, 225 : 31 - 48
  • [45] Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets
    Gupta, Gunjan
    Liu, Alexander
    Ghosh, Joydeep
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (02) : 223 - 237
  • [46] Large-scale data visualization
    Ma, KL
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2001, 21 (04) : 22 - 23
  • [47] Parallel visualization of large data sets
    Rosenberg, R
    Lanzagorta, M
    Chtchelkanova, A
    Khokhlov, A
    VISUAL DATA EXPLORATION AND ANALYSIS VII, 2000, 3960 : 135 - 143
  • [48] Chart Visualization of Large Data Amount
    Pokorny, Pavel
    Stoklaska, Kamil
    SOFTWARE ENGINEERING TRENDS AND TECHNIQUES IN INTELLIGENT SYSTEMS, CSOC2017, VOL 3, 2017, 575 : 460 - 468
  • [49] Interactive Visualization of Large Data Sets
    Godfrey, Parke
    Gryz, Jarek
    Lasek, Piotr
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (08) : 2142 - 2157
  • [50] Generating Orthogonal Voronoi Treemap for Visualization of Hierarchical Data
    Wang, Yan-Chao
    Liu, Jigang
    Lin, Feng
    Seah, Hock-Soon
    ADVANCES IN COMPUTER GRAPHICS, CGI 2020, 2020, 12221 : 394 - 402