YOLO-RDFEA: Object Detection in RD Imagery With Improved YOLOv8 Based on Feature Enhancement and Attention Mechanisms

被引:0
|
作者
Yang, Jian [1 ]
Dong, Mengchen [1 ]
Li, Chuanxiang [1 ]
Nie, Feiping [2 ]
机构
[1] Rocket Force Univ Engn, Sch Engn, Xian 710025, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Range-Doppler imagery; attention mechanism; small object detection; remote sensing image; YOLOv8;
D O I
10.1109/ACCESS.2024.3485499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Range-Doppler (RD) imaging has eclipsed synthetic aperture radar (SAR) imaging as the latest hotspot in the field of radar image object detection, owing to its low cost, high speed, and broad application scope. However, RD images are often of low quality due to the loss of effective features. Aiming at the problem of insufficient accuracy of the existing deep-learning-based sea surface RD image object detection, this article presents an improved YOLOv8 object detection algorithm for RD images based on feature enhancement and attention mechanism (YOLO-RDFEA). First, we have designed a feature extraction network DarknetSD with fewer parameters, to provide fine-grained information and compensate for the lack of abstract information. In addition, by introducing the coordinate attention (CA) mechanism in the feature-fusion stage, the model's attention to spatial and channel features is improved. Moreover, the classification loss is improved using the slide loss function, which enhances the algorithm's focus on the features of hard examples. Finally, comprehensive tests and evaluations are conducted using a self-built RD image dataset. Compared with the YOLOv8 baseline, the YOLO-RDFEA algorithm significantly reduced the misdetection of ships, its R was elevated by 17.9%. The all-category F1 score increased by 5.1% and mAP0.5 improved by 3.4%, which proved that the algorithm improves the detection and identification performance of all object categories. At the same time, the number of model parameters was reduced by 65.1%, which provides some basis for the algorithm deployment on the hardware platform.
引用
收藏
页码:158226 / 158238
页数:13
相关论文
共 50 条
  • [21] Underwater Object Detection in Marine Ranching Based on Improved YOLOv8
    Jia, Rong
    Lv, Bin
    Chen, Jie
    Liu, Hailin
    Cao, Lin
    Liu, Min
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (01)
  • [22] DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography
    Qiu, Xiaoyang
    Chen, Yajun
    Sun, Chaoyue
    Li, Jianying
    Niu, Meiqi
    IEEE ACCESS, 2024, 12 : 125160 - 125169
  • [23] MI-YOLO: An Improved Traffic Sign Detection Algorithm Based on YOLOv8
    Wang, Shuo
    Xu, Yang
    ENGINEERING LETTERS, 2024, 32 (12) : 2336 - 2345
  • [24] RMTP-YOLO: an improved dense pedestrian detection algorithm based on YOLOv8
    Li, Gang
    Luo, Hao
    Huang, Huilan
    Yu, Jian
    Huang, Chen
    Xu, Xiaoman
    Cai, Jinxiang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [25] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [26] ADV-YOLO: improved SAR ship detection model based on YOLOv8
    Huang, Yuqin
    Han, Dezhi
    Han, Bing
    Wu, Zhongdai
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [27] IAMF-YOLO: Metal Surface Defect Detection Based on Improved YOLOv8
    Chao, Chang
    Mu, Xingyu
    Guo, Zihan
    Sun, Yujie
    Tian, Xincheng
    Yong, Fang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [28] RIEC-YOLO: an improved road defect detection model based on YOLOv8
    Liu, Tuoqi
    Gu, Minming
    Sun, Sihan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [29] ADH-YOLO: a small object detection based on improved YOLOv8 for airport scene images in hazy weather
    Zhou, Wentao
    Cai, Chengtao
    Srigrarom, Sutthiphong
    Wang, Pengfei
    Cui, Zijian
    Li, Chenming
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [30] AMW-YOLOv8n: Road Scene Object Detection Based on an Improved YOLOv8
    Wu, Donghao
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    Wang, Shengchun
    Huang, Xinyu
    ELECTRONICS, 2024, 13 (20)