Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation

被引:2
|
作者
Chang, Jinman [1 ]
Lee, Jai-Young [1 ]
机构
[1] Univ Seoul, Dept Environm Engn, 163 Seoulsiripdaero, Seoul 02504, South Korea
关键词
wood waste; biochar; adsorption properties; activated carbon; machine learning; HYDROTHERMAL CARBONIZATION; SURFACE-AREA; CARBON; PYROLYSIS;
D O I
10.3390/ma17215359
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study employs machine learning models to predict the adsorption characteristics of biochar-activated carbon derived from waste wood. Activated carbon is a high-performance adsorbent utilized in various fields such as air purification, water treatment, energy production, and storage. However, its characteristics vary depending on the activation conditions or raw materials, making explaining or predicting them challenging using physicochemical or mathematical methods. Therefore, using machine learning techniques to determine the adsorption characteristics of activated carbon in advance will provide economic and time benefits for activated carbon production. Datasets, consisting of 108 points, were used to predict the adsorption characteristics of biochar-activated carbon derived from waste wood. The input variables were the activation conditions, and the iodine number of activated carbon was used as the output variable. The datasets were randomly split into 75% for training and 25% for model validation and normalized by the min-max function. Four models, including artificial neural networks, random forests, extreme gradient boosting, and support vector machines, were used to predict the adsorption properties of biochar-activated carbon. After optimization, the artificial neural network model was identified as the best model, with the highest coefficient determination (0.96) and the lowest mean squared error (0.004017). As a result of the SHAP analysis, activation time was the most crucial variable influencing the adsorption properties. The machine learning model precisely predicts the adsorption characteristics of biochar-activated carbon and can optimize the activated carbon production process.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions
    Song, Yuanbo
    Huang, Zipeng
    Jin, Mengyu
    Liu, Zhe
    Wang, Xiaoxia
    Hou, Cheng
    Zhang, Xu
    Shen, Zheng
    Zhang, Yalei
    Journal of Analytical and Applied Pyrolysis, 2024, 181
  • [22] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [23] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [24] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [25] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [26] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [27] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [28] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [29] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [30] Machine learning prediction of specific capacitance in biomass derived carbon materials: Effects of activation and biochar characteristics
    Yang, Xuping
    Yuan, Chuan
    He, Sirong
    Jiang, Ding
    Cao, Bin
    Wang, Shuang
    FUEL, 2023, 331