Mixed-mode (I plus II) fatigue crack growth of marine steels in Arctic environments

被引:0
|
作者
Qiao, Kaiqing [1 ]
Liu, Zhijie [1 ]
Guo, Qiuyu [1 ]
Wang, Xiaobang [1 ]
Zhang, Shengwei [1 ]
机构
[1] Dalian Maritime Univ, Naval Architecture & Ocean Engn Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Arctic equipment; Fatigue crack growth; Low-temperature mixed mode (I plus II); Fractography; Numerical simulation; PROPAGATION RATES; PREDICTION;
D O I
10.1016/j.oceaneng.2024.118686
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In the Arctic, the fatigue properties of marine steels under low temperatures and complex loads are essential for the safety of ship navigation. In this study, the fatigue crack growth (FCG) characteristics of EH36 and EQ70 steels are explored under low-temperature mixed mode (I + II) through experiments and numerical simulation. Experimental results show that the FCG life and the crack growth retardation (CGR) effect of both steels correlate positively with the loading angle and negatively with the temperature. The prediction results for FCG path indicate that the Maximum Tangential Stress (MTS) criterion provides accurate predictions for loading angles less than 45 degrees in low-temperature mixed mode (I + II), while the Richard model is more suitable for the loading angle of 60 degrees. The simulation results show that, when the crack deflects, KII decreases rapidly in magnitude while KI gradually increases and becomes dominant. The SEM results for the FCG fracture surfaces in both steels revealed that the roughness of the fracture surface is positively correlated with the loading angle, moreover clear transition regions are observed between the pre-crack and crack growth regions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Fatigue crack growth under non-proportional mixed-mode I plus II. Role of compression while shearing
    Bonniot, Thomas
    Doquet, Veronique
    Mai, Si Hai
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 134
  • [22] Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I plus II, I plus III) Loading Conditions
    Lesiuk, Grzegorz
    Smolnicki, Michal
    Rozumek, Dariusz
    Krechkovska, Halyna
    Student, Oleksandra
    Correia, Jose
    Mech, Rafal
    De Jesus, Abilio
    MATERIALS, 2020, 13 (01)
  • [23] Fatigue/fracture characterization of composite bonded joints under mode I, mode II and mixed-mode I plus II
    de Moura, M. F. S. F.
    Goncalves, J. P. M.
    Fernandez, M. V.
    COMPOSITE STRUCTURES, 2016, 139 : 62 - 67
  • [24] FATIGUE CRACK-PROPAGATION UNDER IN PHASE MIXED-MODE I + II LOADING
    SCHILLIG, R
    KUHN, G
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 1992, 23 (04) : 139 - 144
  • [25] A REVIEW OF FATIGUE CRACK-GROWTH IN STEELS UNDER MIXED MODE-I AND MODE-II LOADING
    BOLD, PE
    BROWN, MW
    ALLEN, RJ
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1992, 15 (10) : 965 - 977
  • [26] Mixed mode (I plus II) fatigue crack growth of long term operating bridge steel
    Lesiuk, G.
    Kucharski, P.
    Correia, J. A. F. O.
    De Jesus, M. P.
    Rebelo, C.
    Simoes da Silva, L.
    XVIII INTERNATIONAL COLLOQUIUM ON MECHANICAL FATIGUE OF METALS (ICMFM XVIII), 2016, 160 : 262 - 269
  • [27] Mixed Mode I/II fatigue crack growth in adhesive joints
    Pirondi, A.
    Nicoletto, G.
    ENGINEERING FRACTURE MECHANICS, 2006, 73 (16) : 2557 - 2568
  • [28] Mixed mode (I+II) model of fatigue crack growth
    Golos, K
    Osinski, Z
    Kraciuk, D
    Wasiluk, B
    ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE, VOLS I-III, 1996, : 1107 - 1112
  • [29] Effects of friction and threshold stress intensity factor on mixed-mode I and II fatigue crack growth behavior
    Qian, J
    Fatemi, A
    FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 893 - 898
  • [30] On the validation of mixed-mode I/II crack growth theories for anisotropic rocks
    Sakha, Mahsa
    Nejati, Morteza
    Aminzadeh, Ali
    Ghouli, Saeid
    Saar, Martin O.
    Driesner, Thomas
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 241