(Bounded) Traveling combustion fronts with degenerate kinetics

被引:0
|
作者
Alibaud, Nathaël [1 ,2 ]
Namah, Gawtum [1 ,2 ]
机构
[1] Ecole Nationale Supérieure de Mécanique et des Microtechniques, 26 Chemin de l'Epitaphe, Besançon cedex,25030, France
[2] Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon cedex,25030, France
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
112541
中图分类号
学科分类号
摘要
Combustion - Nonlinear equations
引用
收藏
相关论文
共 50 条
  • [31] Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity
    Wu, Shi-Liang
    Hsu, Cheng-Hsiung
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 923 - 957
  • [32] Last Passage Percolation and Traveling Fronts
    Francis Comets
    Jeremy Quastel
    Alejandro F. Ramírez
    Journal of Statistical Physics, 2013, 152 : 419 - 451
  • [33] TRAVELING TEMPERATURE FRONTS ON CATALYTIC RIBBONS
    PHILIPPOU, G
    SOMANI, M
    LUSS, D
    CHEMICAL ENGINEERING SCIENCE, 1993, 48 (12) : 2325 - 2328
  • [34] Last Passage Percolation and Traveling Fronts
    Comets, Francis
    Quastel, Jeremy
    Ramirez, Alejandro F.
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 419 - 451
  • [35] TRAVELING FRONTS IN NONLINEAR DIFFUSION EQUATIONS
    HADELER, KP
    ROTHE, F
    JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 2 (03) : 251 - 263
  • [36] Traveling wave fronts and the transition to saturation
    Munier, S
    Peschanski, R
    PHYSICAL REVIEW D, 2004, 69 (03)
  • [37] Traveling and standing fronts on curved surfaces
    Bialecki, Slawomir
    Nalecz-Jawecki, Pawel
    Kazmierczak, Bogdan
    Lipniacki, Tomasz
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [38] Stability of pyramidal traveling fronts in time-periodic reaction-diffusion equations with degenerate monostable and ignition nonlinearities
    Liu, Yuan-Hao
    Bu, Zhen-Hui
    Zhang, Suobing
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
  • [39] Fronts, traveling fronts, and their stability in the generalized Swift-Hohenberg equation
    N. E. Kulagin
    L. M. Lerman
    T. G. Shmakova
    Computational Mathematics and Mathematical Physics, 2008, 48 : 659 - 676
  • [40] Fronts, Traveling Fronts, and Their Stability in the Generalized Swift-Hohenberg Equation
    Kulagin, N. E.
    Lerman, L. M.
    Shmakova, T. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 659 - 676