Note on young and arithmetic-geometric mean inequalities for matrices

被引:0
|
作者
Wu, Yanqiu [1 ]
机构
[1] School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing,404100, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this short note, we prove that the conjecture of singular value Young inequality holds when j = n. Meanwhile, we also present a refinement of the arithmetic- geometric mean inequality for unitarily invariant norms.
引用
收藏
页码:347 / 350
相关论文
共 50 条
  • [21] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Hassani, Mehdi
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 453 - 456
  • [22] A GENERALIZATION OF THE ARITHMETIC-GEOMETRIC MEAN
    HEINRICH, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (06): : 265 - 267
  • [23] An approximation to the arithmetic-geometric mean
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2014, 98 (541): : 85 - 95
  • [24] ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    SCHMEICH.EF
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07): : 782 - &
  • [25] On the arithmetic-geometric mean inequality
    Kwon, EG
    Shon, KH
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 233 - 235
  • [26] A GENERALIZED ARITHMETIC-GEOMETRIC MEAN
    BORWEIN, D
    BORWEIN, PB
    SIAM REVIEW, 1984, 26 (03) : 433 - 433
  • [27] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Sababheh, Mohammad
    Furuichi, Shigeru
    Heydarbeygi, Zahra
    Moradi, Hamid Reza
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1255 - 1266
  • [28] Unification of the arithmetic-geometric mean and Holder inequalities for unitarily invariant norms
    Zou, Limin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 : 154 - 162
  • [29] On reverse weighted arithmetic-geometric mean inequalities for two positive operators
    Xue, Jianming (xuejianming104@163.com), 1600, Forum-Editrice Universitaria Udinese SRL
  • [30] Arithmetic-Geometric Mean determinantal identity
    Bayat, M.
    Teimoori, H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2936 - 2941