Predicting inpatient length of stay in a Portuguese hospital using the CRISP-DM methodology

被引:0
|
作者
Previsão de tempos de internamento num hospital português: Aplicação da metodologia CRISP-DM
机构
[1] Laureano, Raul M.S.
[2] Caetano, Nuno
[3] Cortez, Paulo
来源
| 1600年 / Associacao Iberica de Sistemas e Tecnologias de Informacao卷
关键词
CRISP-DM - High quality - Input features - Length of stay - Prediction model - Random forest algorithm - Regression;
D O I
10.4304/risti.13.83-98
中图分类号
学科分类号
摘要
Using data collected from a Portuguese hospital, within the period 2000 to 2013, we adopted the CRISP-DM methodology to predict inpatient length of stay. The best method (random forest algorithm) achieved a high quality prediction. Such model allowed the identification of the most relevant input features, which are related with the patients' clinical attributes.
引用
收藏
页码:83 / 98
相关论文
共 50 条
  • [31] Health Literacy and Hospital Length of Stay: An Inpatient Cohort Study
    Jaffee, Ethan G.
    Arora, Vineet M.
    Matthiesen, Madeleine I.
    Meltzer, David O.
    Press, Valerie G.
    JOURNAL OF HOSPITAL MEDICINE, 2017, 12 (12) : 969 - 973
  • [32] DETERMINANTS OF INPATIENT PSYCHIATRIC LENGTH OF STAY IN AN URBAN COUNTY HOSPITAL
    Michael T. Compton
    Jason Craw
    Bruce E. Rudisch
    Psychiatric Quarterly, 2006, 77 : 173 - 188
  • [33] The effects of hospital concentration on the length of stay and inpatient mortality in Germany
    Valentowitsch, Johann
    Burr, Wolfgang
    GESUNDHEITSOEKONOMIE UND QUALITAETSMANAGEMENT, 2022, 27 (05): : 243 - 253
  • [34] Quantitative Benefit of Inpatient Dermatology Services on Hospital Length of Stay in an Academic Hospital
    Reimer, Camilla
    Lee, Erica
    Wysong, Ashley
    Georgesen, Corey
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (08)
  • [35] Predicting the length of hospital stay of psychiatry patients using signal detection analysis
    Badriah, Fase
    Abe, Takeru
    Nabeshima, Yoshihiro
    Ikeda, Kouji
    Kuroda, Kenji
    Hagihara, Akihito
    PSYCHIATRY RESEARCH, 2013, 210 (03) : 1211 - 1218
  • [36] Predicting Length of Stay in Hospital Using Electronic Records Available at the Time of Admission
    Wilk, Marta
    Marsh, D. William R.
    De Freitas, Sarah
    Prowle, John
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 377 - 381
  • [37] Predicting Hospital Length of Stay using Neural Networks on MIMIC III Data
    Gentimis, Thanos
    Alnaser, Ala' J.
    Durante, Alex
    Cook, Kyle
    Steele, Robert
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 1194 - 1201
  • [38] Predicting Hospital Length of Stay for Accident and Emergency Admissions
    Stone, Kieran
    Zwiggelaar, Reyer
    Jones, Phil
    Mac Parthalain, Neil
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 283 - 295
  • [39] PREDICTING LENGTH OF HOSPITAL STAY OF PSYCHIATRIC-PATIENTS
    GORDON, RE
    JARDIOLIN, P
    GORDON, KK
    AMERICAN JOURNAL OF PSYCHIATRY, 1985, 142 (02): : 235 - 237
  • [40] PREDICTING LENGTH OF HOSPITAL STAY FOR PSYCHIATRIC-INPATIENTS
    KIESLER, CA
    SIMPKINS, C
    MORTON, T
    HOSPITAL AND COMMUNITY PSYCHIATRY, 1990, 41 (02): : 149 - 154