Optimal estimation of derivatives in nonparametric regression

被引:0
|
作者
Dai, Wenlin [1 ]
Tong, Tiejun [2 ]
Genton, Marc G. [1 ]
机构
[1] CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia
[2] Department of Mathematics, Hong Kong Baptist University, Hong Kong
关键词
D O I
暂无
中图分类号
O212 [数理统计];
学科分类号
摘要
We propose a simple framework for estimating derivatives without cutting the regression function in nonparametric regression. Unlike most existing methods that use the symmetric difference quotients, our method is constructed as a linear combination of observations. It is hence very flexible and applicable to both interior and boundary points, including most existing methods as special cases of ours. Within this framework, we define the variance-minimizing estimators for any order derivative of the regression function with a fixed bias-reduction level. For the equidistant design, we derive the asymptotic variance and bias of these estimators. We also show that our new method will, for the first time, achieve the asymptotically optimal convergence rate for difference-based estimators. Finally, we provide an effective criterion for selection of tuning parameters and demonstrate the usefulness of the proposed method through extensive simulation studies of the firstand second-order derivative estimators. © 2016 Wenlin Dai, Tiejun Tong, and Marc G. Genton.
引用
收藏
相关论文
共 50 条
  • [41] A UNIFYING APPROACH TO NONPARAMETRIC REGRESSION ESTIMATION
    JENNENSTEINMETZ, C
    GASSER, T
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1084 - 1089
  • [42] On the nonparametric estimation of the functional expectile regression
    Mohammedi, Mustapha
    Bouzebda, Salim
    Laksaci, Ali
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (03) : 267 - 272
  • [43] NONPARAMETRIC ESTIMATION OF A SMOOTH REGRESSION FUNCTION
    CLARK, RM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 107 - 113
  • [44] MINIMAX BAYES ESTIMATION IN NONPARAMETRIC REGRESSION
    HECKMAN, NE
    WOODROOFE, M
    ANNALS OF STATISTICS, 1991, 19 (04): : 2003 - 2014
  • [45] Estimation of nonparametric regression models by wavelets
    Morettin, Pedro A.
    Porto, Rogerio F.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 539 - 565
  • [46] Nonparametric regression estimation with assigned risk
    Efromovich, Sam
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1748 - 1756
  • [47] One Nonparametric Estimation of the Bernoulli Regression
    Nadaraya, Elizbar
    Babilua, Petre
    Sokhadze, Grigol
    2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [48] On conditional variance estimation in nonparametric regression
    Siddhartha Chib
    Edward Greenberg
    Statistics and Computing, 2013, 23 : 261 - 270
  • [49] NONPARAMETRIC REGRESSION ESTIMATION WITH MISSING DATA
    CHU, CK
    CHENG, PE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) : 85 - 99
  • [50] About the Nonparametric Estimation of the Bernoulli Regression
    Nadaraya, E.
    Babilua, P.
    Sokhadze, G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (22) : 3989 - 4002