Challenges and Prospects of Machine Learning in Visible Light Communication

被引:0
|
作者
Chi N. [1 ]
Jia J. [1 ]
Hu F. [1 ]
Zhao Y. [1 ]
Zou P. [1 ]
机构
[1] Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shang-hai
来源
| 1600年 / Posts and Telecom Press Co Ltd卷 / 05期
基金
中国国家自然科学基金;
关键词
artificial intelligence; deep learning; machine learn-ing; neural network; visual light communication;
D O I
10.23919/JCIN.2020.9200893
中图分类号
学科分类号
摘要
Visible light communication (VLC) is a promising research field in modern wireless communica-tion. VLC has its irreplaceable strength including rich spectrum resources, no electromagnetic disturbance, and high-security guarantee. However, VLC systems suffer from the non-linear effects that exist in almost every part of the system. As a part of artificial intelligence, machine learning (ML) is showing its potential in non-linear mitigating for its natural ability to fit all kinds of transfer functions, which may dramatically push the research in VLC. This paper introduces the application of ML in VLC, describes five recent research of deep learning applications in VLC, and analyses the performance. © 2020, Posts and Telecom Press Co Ltd. All rights reserved.
引用
收藏
页码:302 / 309
页数:7
相关论文
共 50 条
  • [41] Visible Light Communication
    Haas, Harald
    2015 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2015,
  • [42] Visible Light Communication
    Haruyama, Shinichiro
    IDW'10: PROCEEDINGS OF THE 17TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2010, : 2189 - 2192
  • [43] Visible Light Communication
    Salian, Punith P.
    Prabhu, Sachidananda
    Amin, Preetham
    Naik, Sumanth K.
    Parashuram, M. K.
    2013 TEXAS INSTRUMENTS INDIA EDUCATORS' CONFERENCE (TIIEC 2013), 2013, : 379 - 383
  • [44] A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning
    Soto, Ismael
    Zamorano-Illanes, Raul
    Becerra, Raimundo
    Jativa, Pablo Palacios
    Azurdia-Meza, Cesar A.
    Alavia, Wilson
    Garcia, Veronica
    Ijaz, Muhammad
    Zabala-Blanco, David
    SENSORS, 2023, 23 (03)
  • [45] CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm
    Hsu, Ke-Ling
    Wu, Yu-Chun
    Chuang, Yu-Cheng
    Chow, Chi-Wai
    Liu, Yang
    Liao, Xin-Lan
    Lin, Kun-Hsien
    Chen, Yi-Yuan
    OPTICS EXPRESS, 2020, 28 (02) : 2427 - 2432
  • [46] A Machine Learning Model for Microcontrollers Enabling Low Power Indoor Positioning Systems via Visible Light Communication
    Cappelli, Irene
    Carli, Federico
    Intravaia, Matteo
    Micheletti, Federico
    Peruzzi, Giacomo
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2022), 2022,
  • [47] Data signal demodulation based on machine learning for digital signage and image sensor based visible light communication
    Iyoda, Yuki
    Kobayashi, Kentaro
    Chujo, Wataru
    IEICE COMMUNICATIONS EXPRESS, 2021, 10 (12): : 912 - 917
  • [48] Machine Learning Identification of Organic Compounds Using Visible Light
    Bikku, Thulasi
    Fritz, Ruben A.
    Colon, Yamil J.
    Herrera, Felipe
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (10): : 2407 - 2414
  • [49] Utilizing Machine Learning to Advance Battery Materials Design: Challenges and Prospects
    Manna, Souvik
    Paul, Poulami
    Manna, Surya Sekhar
    Das, Sandeep
    Pathak, Biswarup
    CHEMISTRY OF MATERIALS, 2025, 37 (05) : 1759 - 1787
  • [50] Machine learning in indoor visible light positioning systems: A review
    Tran, Huy Q.
    Ha, Cheolkeun
    NEUROCOMPUTING, 2022, 491 : 117 - 131