A hybrid wake method for simulating yaw tandem wind turbine

被引:0
|
作者
Yuan, Yuming [2 ]
Zhou, Binzhen [1 ,2 ]
Yang, Zhiwei [2 ]
Liu, Bo [3 ]
Zhou, Zhipeng [3 ]
Li, Mingxin [4 ,5 ]
机构
[1] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510641, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Peoples R China
[3] China Power Engn Consulting Grp Co LTD, Beijing 100032, Peoples R China
[4] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow City, Scotland
[5] Univ Tokyo, Sch Engn, Dept Civil Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
Yawed wake; Wake model; Velocity distribution; Wind turbine; Wake steering; Wake deflection; FARM; MODEL; IMPACT;
D O I
10.1016/j.oceaneng.2024.119549
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Accurately describing the meandering of the wake of a yaw wind turbine is crucial. Most yaw analytical models use a superposition model to consider the interaction of wind turbine wake, which can introduce certain errors. A hybrid wake model for wind turbine, which is based on the Computational Fluid Dynamics-Improving the dynamic wake meandering (CFD-IDWM) hybrid wake model for analyzing the yaw of a tandem wind turbine, is proposed in this study. A search zero method is proposed to address the challenges faced by existing wake center tracking methods when applied to hybrid wake models. In contrast to conventional yaw wake models, the hybrid model employs CFD tools in the near wake to predict wind turbine wake interactions, thereby circumventing errors associated with wake superposition methods. Numerical simulations were performed on the wake of a tandem wind turbine under various yaw and tilt angles. The wake deflection and velocity distribution verification CFD results, and the formation of counter-rotating vortex pairs (CVP) was accurately reconstructed in the downstream computational domain. Compared to traditional CFD methods, the hybrid model has improved computational efficiency by 40%, with consistent accuracy, and provides significant improvements for predicting the total power generation of yaw wind turbines.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model
    Dou, Bingzheng
    Qu, Timing
    Lei, Liping
    Zeng, Pan
    ENERGY, 2020, 209
  • [22] Assessment of yaw-control effects on wind turbine-wake interaction: A coupled unsteady vortex lattice method and curled wake model analysis
    Han, Wonsuk
    Kim, Homin
    Son, Eunkuk
    Lee, Soogab
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 242
  • [23] Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions
    Gao, Zhiteng
    Li, Ye
    Wang, Tongguang
    Shen, Wenzhong
    Zheng, Xiaobo
    Probsting, Stefan
    Li, Deshun
    Li, Rennian
    RENEWABLE ENERGY, 2021, 172 : 263 - 275
  • [24] Large Eddy Simulation of wind turbine fatigue loading and yaw dynamics induced by wake turbulence
    Chanprasert, W.
    Sharma, R. N.
    Cater, J. E.
    Norris, S. E.
    RENEWABLE ENERGY, 2022, 190 : 208 - 222
  • [25] Design, steady performance and wake characterization of a scaled wind turbine with pitch, torque and yaw actuation
    Nanos, Emmanouil M.
    Bottasso, Carlo L.
    Campagnolo, Filippo
    Muehle, Franz
    Letizia, Stefano
    Iungo, G. Valerio
    Rotea, Mario A.
    WIND ENERGY SCIENCE, 2022, 7 (03) : 1263 - 1287
  • [26] Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine
    Scheurich, Frank
    Fletcher, Timothy M.
    Brown, Richard E.
    WIND ENERGY, 2011, 14 (02) : 159 - 177
  • [27] Nonlinear inviscid aerodynamics of a wind turbine rotor in surge, sway, and yaw motions using a free-wake panel method
    Ribeiro, Andre F. P.
    Casalino, Damiano
    Ferreira, Carlos S.
    WIND ENERGY SCIENCE, 2023, 8 (04) : 661 - 675
  • [28] METHOD FOR EVALUATING WIND TURBINE WAKE EFFECTS ON WIND FARM PERFORMANCE
    NEUSTADTER, HE
    SPERA, DA
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1985, 107 (03): : 240 - 243
  • [29] Modified Hill Climbing Method for Active Yaw Control In Wind turbine
    Wu Xin
    Liu Yanping
    Teng Wei
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6677 - 6680
  • [30] A novel hybrid free-wake model for wind turbine performance and wake evolution
    Su, Keye
    Bliss, Donald
    RENEWABLE ENERGY, 2019, 131 : 977 - 992