Finite element approximation of data-driven problems in conductivity

被引:0
|
作者
Schiemann, Annika [1 ]
Meyer, Christian [1 ]
机构
[1] Tech Univ Dortmund, Fak Math, Lehrstuhl LSX, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Data driven models; Raviart-Thomas finite elements; Data convergence; Proximal gradient method; ELASTICITY;
D O I
10.1007/s10092-024-00616-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite element discretization of the data driven approach according to Kirchdoerfer and Ortiz (Comput Methods Appl Mech Eng 304:81-101, 2016) for the solution of PDEs with a material law arising from measurement data. To simplify the setting, we focus on a scalar diffusion problem instead of a problem in elasticity. It is proven that the data convergence analysis from Conti et al. (Arch Ration Mech Anal 229(1):79-123, 2018) carries over to the finite element discretization as long as H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document}-conforming finite elements such as the Raviart-Thomas element are used. As a corollary, minimizers of the discretized problems converge in data in the sense of Conti et al., as the mesh size tends to zero and the approximation of the local material data set gets more and more accurate. We moreover present several heuristics for the solution of the discretized data driven problems, which is equivalent to a quadratic semi-assignment problem and therefore NP-hard. We test these heuristics by means of three examples and it turns out that the "classical" alternating projection method according to Kirchdoerfer and Ortiz is superior w.r.t. the ratio of accuracy and computational time.
引用
收藏
页数:46
相关论文
共 50 条
  • [31] Finite element approximation for some quasilinear elliptic problems
    Matsuzawa, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 96 (01) : 13 - 25
  • [32] Finite element approximation of nonlocal heat radiation problems
    Tiihonen, T
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (06): : 1071 - 1089
  • [33] FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS
    CHANG Yanzhen
    YANG Danping
    Journal of Systems Science & Complexity, 2014, 27 (05) : 866 - 882
  • [34] On optimal finite element approximation for unilateral contact problems
    Hild, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10): : 1233 - 1236
  • [35] Finite element approximation for a class of parameter estimation problems
    Chang Yanzhen
    Yang Danping
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (05) : 866 - 882
  • [36] FINITE ELEMENT APPROXIMATION OF SPARSE PARABOLIC CONTROL PROBLEMS
    Casas, Eduardo
    Mateos, Mariano
    Roesch, Arnd
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) : 393 - 417
  • [37] Finite element approximation for a class of parameter estimation problems
    Yanzhen Chang
    Danping Yang
    Journal of Systems Science and Complexity, 2014, 27 : 866 - 882
  • [38] Mixed finite element approximation of eddy current problems
    Rodríguez, AA
    Hiptmair, R
    Valli, A
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) : 255 - 271
  • [39] Hybrid finite element - spectral element approximation of wave propagation problems
    Lahaye, D.J.P.
    Maggio, F.
    Quarteroni, A.
    East-West Journal of Numerical Mathematics, 1997, 5 (04): : 265 - 289
  • [40] Efficient Box Approximation for Data-Driven Probabilistic Geofencing
    Wu, Pengcheng
    Chen, Jun
    UNMANNED SYSTEMS, 2024, 12 (03) : 511 - 522