Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems

被引:0
|
作者
Li, Jing [1 ]
Tartakovsky, Alexandre M. [1 ,2 ]
机构
[1] Pacific Northwest National Laboratory, Richland,WA,99352, United States
[2] Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana,IL,61801, United States
关键词
Cost functions - Deep neural networks - Ordinary differential equations - Parameter estimation - Statistical Physics;
D O I
暂无
中图分类号
学科分类号
摘要
We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse. © 2022 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [41] Meshless Physics-Informed Neural Network Method for Solving the Photon Transport Equation in Turbid Media
    Xu, H.
    MEDICAL PHYSICS, 2024, 51 (10) : 7939 - 7940
  • [42] Solving groundwater flow equation using physics-informed neural networks
    Cuomo, Salvatore
    De Rosa, Mariapia
    Giampaolo, Fabio
    Izzo, Stefano
    Di Cola, Vincenzo Schiano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 106 - 123
  • [43] Physics-informed Neural Network for Solving Buckley-Leverett Equation of Plane Radial Flow
    Zang, Jianpeng
    Song, Yizhuo
    Bai, Junting
    Zhang, Kai
    Wang, Jian
    Ablameyko, Sergey, V
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 39 - 44
  • [44] Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation
    Lopez, Z. Sanchez
    Cortes, G. Berenice Diaz
    REVISTA MEXICANA DE FISICA, 2025, 71 (02)
  • [45] Transport of Organic Volatiles through Paper: Physics-Informed Neural Networks for Solving Inverse and Forward Problems
    Alexandra Serebrennikova
    Raimund Teubler
    Lisa Hoffellner
    Erich Leitner
    Ulrich Hirn
    Karin Zojer
    Transport in Porous Media, 2022, 145 : 589 - 612
  • [46] Transport of Organic Volatiles through Paper: Physics-Informed Neural Networks for Solving Inverse and Forward Problems
    Serebrennikova, Alexandra
    Teubler, Raimund
    Hoffellner, Lisa
    Leitner, Erich
    Hirn, Ulrich
    Zojer, Karin
    TRANSPORT IN POROUS MEDIA, 2022, 145 (03) : 589 - 612
  • [47] A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces
    Hu, Wei-Fan
    Shih, Yi-Jun
    Lin, Te-Sheng
    Lai, Ming-Chih
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [48] Physics-informed neural network based on control volumes for solving time-independent problems
    Wei, Chang
    Fan, Yuchen
    Zhou, Yongqing
    Liu, Xin
    Li, Chi
    Li, Xinying
    Wang, Heyang
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [49] On the potential of physics-informed neural networks to solve inverse problems in tokamaks
    Rossi, Riccardo
    Gelfusa, Michela
    Murari, Andrea
    NUCLEAR FUSION, 2023, 63 (12)
  • [50] A Physics-Informed Recurrent Neural Network for Solving Time-Dependent Partial Differential Equations
    Liang, Ying
    Niu, Ruiping
    Yue, Junhong
    Lei, Min
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)