Convergence study of the cellular automata technique applied to structural mechanics problems with the use of the finite element method

被引:0
|
作者
Lages E.N. [1 ]
Ramos A.S., Jr. [1 ]
Da Silva Lobo T.P. [1 ]
Cavalcanti R.V. [1 ]
机构
[1] Universidade Federal de Alagoas, Centro de Tecnologia, Maceió, AL
来源
| 2016年 / University Federal de Uberlandia卷 / 25期
关键词
Cellular automata; Finite Elements Methods; Solid and structural mechanics;
D O I
10.14393/19834071.2016.34326
中图分类号
学科分类号
摘要
Structural and solid mechanics problems can show complex global behavior and, in many cases, without an analytical solution. Numerical methods, such as the Finite Element Method (FEM), are traditionally used to study these systems. The Cellular Automata (CA) is a model based on the idea that the microscopic behavior of a system can be reproduced by smaller systems with simpler local rules. As this approach goes from a microscale to a macroscale, this technique enables the study of microscopic effects in macroscopic objects in a natural way. This paper studies the convergence of a hybrid technique of CA and FEM by developing a computational module capable of simulating solid- and structural-mechanics problems. Four update schemes are studied, evaluating the convergence, with different ordinations and degrees of discretization. © 2016 University Federal de Uberlandia. All rights reserved.
引用
收藏
页码:79 / 89
页数:10
相关论文
共 50 条
  • [31] FINITE-ELEMENT CONVERGENCE STUDY FOR ACCELERATING FLOW PROBLEMS
    GARTLING, DK
    NICKELL, RE
    TANNER, RI
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (07) : 1155 - 1174
  • [32] A study of the convergence of the scaled boundary finite element method
    Deeks, AJ
    Costello, C
    MECHANICS OF STRUCTURES AND MATERIALS, 1999, : 35 - 40
  • [33] Semianalytic Finite-Element Method in Problems of Nonlinear Continuum Mechanics
    V. A. Bazhenov
    A. I. Gulyar
    International Applied Mechanics, 2003, 39 : 402 - 437
  • [34] Semianalytic finite-element method in problems of nonlinear continuum mechanics
    Bazhenov, VA
    Gulyar, AI
    INTERNATIONAL APPLIED MECHANICS, 2003, 39 (04) : 402 - 437
  • [35] Convergence rate of multiscale finite element method for various boundary problems
    Ye, Changqing
    Dong, Hao
    Cui, Junzhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
  • [36] On the convergence of finite element method for second order elliptic interface problems
    Sinha, RK
    Deka, B
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (01) : 99 - 115
  • [37] Convergence analysis of a multiscale finite element method for singularly perturbed problems
    Franca, LP
    Madureira, AL
    Tobiska, L
    Valentin, F
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 839 - 866
  • [38] CONVERGENCE OF A MIXED FINITE-ELEMENT METHOD FOR PLATE BENDING PROBLEMS
    JOHNSON, C
    NUMERISCHE MATHEMATIK, 1973, 21 (01) : 43 - 62
  • [39] USE OF FINITE-ELEMENT METHOD FOR SHELL PROBLEMS
    CIARLET, PG
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (18): : 1229 - 1232
  • [40] Applied mechanics of the Puricelli osteotomy: A linear elastic analysis with the finite element method
    Puricelli E.
    Fonseca J.S.O.
    De Paris M.F.
    Sant'Anna H.
    Head & Face Medicine, 3 (1)