DeepAIP: Deep learning for anti-inflammatory peptide prediction using pre-trained protein language model features based on contextual self-attention network
被引:0
|
作者:
Zhu, Lun
论文数: 0引用数: 0
h-index: 0
机构:
Changzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Changzhou Univ, Artificial Intelligence Aliyun Sch Big Data, Sch Software, Changzhou 213164, Peoples R China
Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213164, Peoples R ChinaChangzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Zhu, Lun
[1
,2
,3
]
Yang, Qingguo
论文数: 0引用数: 0
h-index: 0
机构:
Changzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Changzhou Univ, Artificial Intelligence Aliyun Sch Big Data, Sch Software, Changzhou 213164, Peoples R ChinaChangzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Yang, Qingguo
[1
,2
]
Yang, Sen
论文数: 0引用数: 0
h-index: 0
机构:
Changzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Changzhou Univ, Artificial Intelligence Aliyun Sch Big Data, Sch Software, Changzhou 213164, Peoples R China
Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213164, Peoples R ChinaChangzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
Yang, Sen
[1
,2
,3
]
机构:
[1] Changzhou Univ, Sch Comp Sci, Sch Software, Changzhou 213164, Peoples R China
[2] Changzhou Univ, Artificial Intelligence Aliyun Sch Big Data, Sch Software, Changzhou 213164, Peoples R China
[3] Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Changzhou 213164, Peoples R China
Contextual self-attention model;
Pre-trained large language model encoding;
Anti-inflammatory peptide;
MATRICES;
D O I:
10.1016/j.ijbiomac.2024.136172
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and other immunosuppressants are commonly used medications for treating inflammation. However, these drugs often come with numerous side effects. Therefore, finding more effective methods for inflammation treatment has become more necessary. The study of anti-inflammatory peptides can effectively address these issues. In this work, we propose a contextual self- attention deep learning model, coupled with features extracted from a pre-trained protein language model, to predict Anti-inflammatory Peptides (AIP). The contextual self-attention module can effectively enhance and learn the features extracted from the pre-trained protein language model, resulting in high accuracy to predict AIP. Additionally, we compared the performance of features extracted from popular pre-trained protein language models available in the market. Finally, Prot-T5 features demonstrated the best comprehensive performance as the input for our deep learning model named DeepAIP. Compared with existing methods on benchmark test dataset, DeepAIP gets higher Matthews Correlation Coefficient and Accuracy score than the second-best method by 16.35 % and 6.91 %, respectively. Performance comparison analysis was conducted using a dataset of 17 novel anti-inflammatory peptide sequences. DeepAIP demonstrates outstanding accuracy, correctly identifying all 17 peptide types as AIP and predicting values closer to the true ones. Data and code are available at https://g ithub.com/YangQingGuoCCZU/DeepAIP.
机构:
Bina Nusantara Univ, Comp Sci Dept, BINUS, Grad Program,Comp Sci, Jakarta 11480, IndonesiaBina Nusantara Univ, Comp Sci Dept, BINUS, Grad Program,Comp Sci, Jakarta 11480, Indonesia
Christian, Hans
论文数: 引用数:
h-index:
机构:
Suhartono, Derwin
论文数: 引用数:
h-index:
机构:
Chowanda, Andry
Zamli, Kamal Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Pahang, Coll Comp & Appl Sci, Fac Comp, Pahang 26600, MalaysiaBina Nusantara Univ, Comp Sci Dept, BINUS, Grad Program,Comp Sci, Jakarta 11480, Indonesia
机构:
Chonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju 61186, South KoreaChonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju 61186, South Korea
Yoo, Sunyong
论文数: 引用数:
h-index:
机构:
Jeong, Myeonghyeon
论文数: 引用数:
h-index:
机构:
Seomun, Subhin
Kim, Kiseong
论文数: 0引用数: 0
h-index: 0
机构:
BioBrain Inc, R&D Ctr, Daejeon 34013, South KoreaChonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju 61186, South Korea
Kim, Kiseong
Han, Youngmahn
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Sci & Technol Informat, Supercomp Applicat Ctr, Daejeon 02792, South KoreaChonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju 61186, South Korea
机构:
Beijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China
Yan Wenjing
Zhang Baoyu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China
Zhang Baoyu
Zuo Min
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China
Zuo Min
Zhang Qingchuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China
Zhang Qingchuan
Wang Hong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China
Wang Hong
Mao Da
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Metrol, Div Chem Metrol & Analyt Sci, Beijing 100029, Peoples R ChinaBeijing Technol & Business Univ, Natl Engn Lab Agriprod Qual Traceabil, Beijing 100048, Peoples R China