A mixed algorithm for nonlinear complementarity problems

被引:1
|
作者
Wang X.-Y. [1 ]
Wang Y. [1 ]
Wang Y.-Y. [1 ]
机构
[1] Taiyuan University of Science and Technology, Taiyuan
关键词
Nonlinear complementarity problem; Nonmonotone; Pso; Trust region;
D O I
10.4304/jcp.6.8.1562-1569
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
Combining nonmonotone trust region algorithms and PSO methods, we propose a mixed method for nonlinear complementarity problems. The iterative formula of μk is very simple. When the determinant of Bk +λk I is very large or small, the PSO method will obtain a new point which gets us better astringency. Numerical test results show the effectiveness of this algorithm. © 2011 ACADEMY PUBLISHER.
引用
收藏
页码:1562 / 1569
页数:7
相关论文
共 50 条
  • [41] A novel algorithm for mixed integer nonlinear optimization problems
    Hussain, M
    Ahmadzadeh, A
    Sayyar-Roudsari, B
    Kimiaghalam, B
    Homaifar, A
    Walls, J
    SOFT COMPUTING WITH INDUSTRIAL APPLICATIONS, VOL 17, 2004, 17 : 543 - 548
  • [42] VALIDATED SOLUTIONS OF MIXED COMPLEMENTARITY PROBLEMS
    Niu, Lingfeng
    Wang, Zhengyu
    PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (01): : 195 - 209
  • [43] Mixed Nonlinear Complementarity Problems via Nonlinear Optimization: Numerical Results on Multi-Rigid-Body Contact Problems with Friction
    Andreani, Roberto
    Friedlander, Ana
    Mello, Margarida P.
    Santos, Sandra A.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2005, 6 (02): : 85 - 94
  • [44] An existence theorem for nonlinear complementarity problems
    Isac, G.
    Popovici, I. M.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 539 - 543
  • [45] THE KANTOROVICH THEOREM FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    周叔子
    严钦容
    Chinese Science Bulletin, 1992, (07) : 529 - 533
  • [46] Existence of the Solution for Nonlinear Complementarity Problems
    Jiang, Xingwu
    Yang, Taishan
    Wang, Xiuyu
    Liu, Qinghuai
    PROCEEDINGS OF THE 2011 INTERNATIONAL CONFERENCE ON INFORMATICS, CYBERNETICS, AND COMPUTER ENGINEERING (ICCE2011), VOL 3: COMPUTER NETWORKS AND ELECTRONIC ENGINEERING, 2011, 112 : 509 - +
  • [47] Smoothing Methods for Nonlinear Complementarity Problems
    Haddou, Mounir
    Maheux, Patrick
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (03) : 711 - 729
  • [48] Smooth approximations to nonlinear complementarity problems
    Chen, BT
    Harker, PT
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) : 403 - 420
  • [49] An iteration method for nonlinear complementarity problems
    Zheng, Hua
    Li, Wen
    Vong, Seakweng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [50] Smoothing Methods for Nonlinear Complementarity Problems
    Mounir Haddou
    Patrick Maheux
    Journal of Optimization Theory and Applications, 2014, 160 : 711 - 729