A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration

被引:2
|
作者
Fan, Xiaoyu [1 ,2 ]
Xu, Hao [3 ]
Li, Yihong [1 ,2 ]
Li, Junxian [1 ,2 ]
Wang, Zhikang [1 ,2 ]
Gao, Zhaozhao [1 ]
Ji, Wei [4 ]
Chen, Liubiao [1 ,2 ,5 ]
Wang, Junjie [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen Sci & Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Natl Petr Corp, Econ & Technol Res Inst, Beijing 100724, Peoples R China
[4] Zhonglv Zhongke Energy Storage Technol Co Ltd, 18 Lishi Hutong, Beijing 100020, Peoples R China
[5] Inst Opt Phys & Engn Technol, Jinan 250100, Peoples R China
关键词
Liquid air energy storage (LAES); Efficient thermal storage; Gas-solid heat transfer; Thermodynamic characteristic analysis; Economic evaluation; MEMBRANE TECHNOLOGY; HEAT-EXCHANGERS; CO2; CAPTURE; PERFORMANCE; RECOVERY; COLD; CHALLENGES; PLANTS; COST; BEDS;
D O I
10.1016/j.apenergy.2024.123739
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Liquid air energy storage (LAES) stands out as a highly promising solution for large-scale energy storage, offering advantages such as geographical flexibility and high energy density. However, the technology faces challenges inherent in the cold and heat storage processes. While systems with liquid-phase medium can offer high efficiency, it comes with drawbacks including environmental pollution, safety concerns, and high costs. Alternatively, systems with solid-phase media in packed beds can address these issues, yet it profoundly weakens system performance. Compounding these issues, many current economic evaluations of LAES rely on inaccurate or outdated data, resulting in skewed assessments. In response to these challenges and to drive scientific evaluation and engineering advancements in LAES, this study introduces an innovative LAES system with efficient thermal storage (ETS-LAES). An original thermal storage method is introduced for the first time, based on gravity-driven solid-phase particle flow and gas-solid direct contact heat transfer. The study establishes thermodynamic and heat transfer models, along with a universally applicable economic evaluation model. The ETS-LAES system is comprehensively assessed utilizing different operational modes introduced in the study. Research findings showcase a round-trip efficiency (RTE) of 58.76%, currently standing as the highest RTE record for cold and heat storage based on solid-phase media. The economic evaluation reveals substantial advantages for the ETS-LAES system during the transition from demonstration projects to commercial projects and guides the selection of the scale for the LAES system. The levelized cost of storage (LCOS) for the ETS-LAES system can decrease to 0.0982 USD/kWh as the capacity increases to 1000MW, due to the use of inexpensive solid-phase thermal storage media throughout. The investment payback period (IPP) is halved compared to conventional LAES systems, indicating a strengthening of the profitability. The proposed solution in this study holds great potential, particularly in offering valuable insights into the practical implementation and commercialization of LAES.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] The thermodynamic effect of thermal energy storage on compressed air energy storage system
    Zhang, Yuan
    Yang, Ke
    Li, Xuemei
    Xu, Jianzhong
    RENEWABLE ENERGY, 2013, 50 : 227 - 235
  • [22] Experimental study of compressed air energy storage system with thermal energy storage
    Wang, Sixian
    Zhang, Xuelin
    Yang, Luwei
    Zhou, Yuan
    Wang, Junjie
    ENERGY, 2016, 103 : 182 - 191
  • [23] Design of thermal energy storage unit for Compressed Air Energy Storage system
    Szybiak, Maciej
    Jaworski, Maciej
    17TH INTERNATIONAL CONFERENCE HEAT TRANSFER AND RENEWABLE SOURCES OF ENERGY (HTRSE-2018), 2018, 70
  • [24] Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies
    Rabi, Ayah Marwan
    Radulovic, Jovana
    Buick, James M.
    ENERGIES, 2023, 16 (17)
  • [25] Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage
    Guo, Cong
    Xu, Yujie
    Guo, Huan
    Zhang, Xinjing
    Lin, Xipeng
    Wang, Liang
    Zhang, Yi
    Chen, Haisheng
    APPLIED THERMAL ENGINEERING, 2019, 147 : 684 - 693
  • [26] Optimal Configuration Strategy of Energy Storage Capacity in Wind/PV/Storage Hybrid System
    Li J.
    Guo B.
    Niu M.
    Xiu X.
    Tian L.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33 (06): : 1189 - 1196
  • [27] Analysis of controls for integrated energy storage system in energy arbitrage configuration with concrete thermal energy storage
    Mikkelson, Daniel
    Frick, Konor
    APPLIED ENERGY, 2022, 313
  • [28] Optimal Configuration of Energy Storage for Integrated Region Energy System Considering Power/Thermal Flexible Load
    Xu, Zhou
    Sun, Yonghui
    Xie, Dongliang
    Wang, Jianxi
    Zhong, Yongjie
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2020, 44 (02): : 53 - 59
  • [29] Evaluation of energy storage method using liquid air
    Chino, Kooichi
    Araki, Hidefumi
    Heat Transfer - Asian Research, 2000, 29 (05): : 347 - 357
  • [30] Performance investigation of a novel polygeneration system based on liquid air energy storage
    Esmaeilion, Farbod
    Soltani, M.
    Dusseault, M. B.
    Rosen, Marc A.
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277