Split Edge-Cloud Neural Networks for Better Adversarial Robustness

被引:0
|
作者
Douch, Salmane [1 ]
Abid, Mohamed Riduan [2 ]
Zine-Dine, Khalid [3 ]
Bouzidi, Driss [1 ]
Benhaddou, Driss [4 ]
机构
[1] Mohammed V Univ Rabat, Natl Sch Comp Sci & Syst Anal ENSIAS, Rabat 30050, Morocco
[2] Columbus State Univ, TSYS Sch Comp Sci, Columbus, GA 31907 USA
[3] Mohammed V Univ Rabat, Fac Sci FSR, Rabat 30050, Morocco
[4] Alfaisal Univ, Coll Engn, Riyadh 11533, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Robustness; Edge computing; Perturbation methods; Computational modeling; Cloud computing; Certification; Biological neural networks; Quantization (signal); Image edge detection; Deep learning; Adversarial attacks; cloud computing; edge computing; edge intelligence; robustness certification; split neural networks;
D O I
10.1109/ACCESS.2024.3487435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing is a critical component in the success of 5G and 6G networks, particularly given the computation-intensive nature of emerging applications. Despite all it advantages, cloud computing faces limitations in meeting the strict latency and bandwidth requirements of applications such as eHealth and automotive systems. To overcome these limitations, edge computing has emerged as a novel paradigm that bring computation closer to the user. Moreover, intelligent tasks such as deep learning ones demand more memory and processing power than edge devices can handle. To address these challenges, methods like quantization, pruning, and distributed inference have been proposed. Similarly, this paper study a promising approach for running deep learning models at the edge: split neural networks (SNN). SNNs feature a neural network architecture with multiple early exit points, allowing the model to make confident decisions at earlier layers without processing the entire network. This not only reduces memory and computational demands but it also makes SNNs well-suited for edge computing applications. As the use of SNNs expands, ensuring their safety-particularly their robustness to perturbations-becomes crucial for deployment in safety-critical scenarios. This paper presents the first in-depth study on the robustness of split Edge Cloud neural networks. We review state-of-the-art robustness certification techniques and evaluate SNN robustness using the auto_LiRPA and Auto Attack libraries, comparing them to standard neural networks. Our results demonstrate that SNNs reduce average inference time by 75'% and certify 4 to 10 times more images as robust, while improving overall robustness accuracy by 1% to 10%.
引用
收藏
页码:158854 / 158865
页数:12
相关论文
共 50 条
  • [11] Adversarial Robustness Certification for Bayesian Neural Networks
    Wicker, Matthew
    Platzer, Andre
    Laurenti, Luca
    Kwiatkowska, Marta
    FORMAL METHODS, PT I, FM 2024, 2025, 14933 : 3 - 28
  • [12] Adversarial robustness improvement for deep neural networks
    Eleftheriadis, Charis
    Symeonidis, Andreas
    Katsaros, Panagiotis
    MACHINE VISION AND APPLICATIONS, 2024, 35 (03)
  • [13] Robustness of deep neural networks in adversarial examples
    Song, Xiao (songxiao@buaa.edu.cn), 1600, University of Cincinnati (24):
  • [14] Adversarial robustness improvement for deep neural networks
    Charis Eleftheriadis
    Andreas Symeonidis
    Panagiotis Katsaros
    Machine Vision and Applications, 2024, 35
  • [15] On the Robustness of Bayesian Neural Networks to Adversarial Attacks
    Bortolussi, Luca
    Carbone, Ginevra
    Laurenti, Luca
    Patane, Andrea
    Sanguinetti, Guido
    Wicker, Matthew
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [16] ROBUSTNESS OF DEEP NEURAL NETWORKS IN ADVERSARIAL EXAMPLES
    Teng, Da
    Song, Xiao m
    Gong, Guanghong
    Han, Liang
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2017, 24 (02): : 123 - 133
  • [17] Energy-Aware Workload Allocation for Distributed Deep Neural Networks in Edge-Cloud Continuum
    Jin, Yi
    Xu, Jiawei
    Huan, Yuxiang
    Yan, Yulong
    Zheng, Lirong
    Zou, Zhuo
    32ND IEEE INTERNATIONAL SYSTEM ON CHIP CONFERENCE (IEEE SOCC 2019), 2019, : 213 - 217
  • [18] JMDC: A joint model and data compression system for deep neural networks collaborative computing in edge-cloud networks
    Ding, Yi
    Fang, Weiwei
    Liu, Mengran
    Wang, Meng
    Cheng, Yusong
    Xiong, Naixue
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 173 : 83 - 93
  • [19] Balancing Video Analytics Processing and Bandwidth for Edge-Cloud Networks
    O'Gorman, Lawrence
    Wang, Xiaoyang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2618 - 2623
  • [20] Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks
    Zhang, Qi
    Gui, Lin
    Zhu, Shichao
    Lang, Xiupu
    IEEE ACCESS, 2021, 9 : 85350 - 85366