Temporal relation identification of Uyghur event based on Bi-LSTM with attention mechanism; [结合注意力机制的Bi-LSTM维吾尔语事件时序关系识别]

被引:1
|
作者
Tian S. [1 ]
Hu W. [1 ]
Yu L. [1 ]
Ibrayim T. [2 ]
Zhao J. [3 ]
Li P. [3 ]
机构
[1] College of Software, Xinjiang University, Urumqi
[2] College of Information Science and Technology, Xinjiang University, Urumqi
[3] College of Chinese Language, Xinjiang University, Urumqi
来源
Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition) | 2018年 / 48卷 / 03期
关键词
Attention mechanism; Bidirectional-long short-term memory network; Temporal relation; Uyghur; Word embedding;
D O I
10.3969/j.issn.1001-0505.2018.03.003
中图分类号
学科分类号
摘要
As for the Uyghur event temporal relation identification problem, a model based on bidirectional-long short-term memory (Bi-LSTM) with attention mechanism is proposed. Based on the characteristics of Uyghur language and event temporal relation, 13 features of event internal structural information are extracted. The word embedding is introduced as the Bi-LSTM input to mine the context semantic information implied by a given event sentence. An attention mechanism is established with the event triggers to obtain the event semantic features of the given event sentence. The event internal structural features and the semantic features are combined to be the input of the softmax layer to complete the identification of event temporal relation. The experimental results show that the method can obtain the semantic information of the context and the implicit semantic features of the corresponding event sentence. After fusing the internal structural characteristics of the event, the identification precision rate is 89.42%; the recall rate is 86.70% and the F value for measuring the overall performance of the model is 88.03%,indicating the effectiveness of this method in the identification task of Uyghur event temporal relation. © 2018, Editorial Department of Journal of Southeast University. All right reserved.
引用
收藏
页码:393 / 399
页数:6
相关论文
共 38 条
  • [31] 基于注意力与Bi-LSTM混合算法的车企舆情情感分析
    李宸严
    刘继
    信息技术与网络安全, 2021, 40 (01) : 45 - 49
  • [32] A multi-sensor mapping Bi-LSTM model of bridge monitoring data based on spatial-temporal attention mechanism
    Yang, Kang
    Ding, Youliang
    Geng, Fangfang
    Jiang, Huachen
    Zou, Zhengbo
    MEASUREMENT, 2023, 217
  • [33] 基于Bi-LSTM和自注意力机制的旋转机械故障诊断方法研究
    高玉才
    付忠广
    王诗云
    谢玉存
    中国工程机械学报, 2022, 20 (03) : 273 - 278
  • [34] 基于Bi-LSTM和多通道注意力的电网施工中违章量预测方法
    李少龙
    吴艳伟
    计算机应用, 2022, 42(S1) (S1) : 371 - 375
  • [35] 基于BERT与Bi-LSTM融合注意力机制的中医病历文本的提取与自动分类
    杜琳
    曹东
    林树元
    瞿溢谦
    叶辉
    计算机科学, 2020, 47(S2) (S2) : 416 - 420
  • [36] 结合注意力机制和因果卷积网络的维吾尔语方言识别
    孙杰
    王宏
    吾守尔斯拉木
    声学技术, 2020, 39 (06) : 697 - 703
  • [37] 结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别
    张华丽
    康晓东
    李博
    王亚鸽
    刘汉卿
    白放
    计算机应用, 2020, 40(S1) (S1) : 98 - 102
  • [38] 联合Bi-LSTM和注意力加强多尺度卷积的黄河三角洲湿地高光谱图像分类方法研究
    徐美论
    李忠伟
    王雷全
    李娟
    胡亚斌
    梁建
    海洋科学, 2023, (05) : 27 - 40