Temporal relation identification of Uyghur event based on Bi-LSTM with attention mechanism; [结合注意力机制的Bi-LSTM维吾尔语事件时序关系识别]

被引:1
|
作者
Tian S. [1 ]
Hu W. [1 ]
Yu L. [1 ]
Ibrayim T. [2 ]
Zhao J. [3 ]
Li P. [3 ]
机构
[1] College of Software, Xinjiang University, Urumqi
[2] College of Information Science and Technology, Xinjiang University, Urumqi
[3] College of Chinese Language, Xinjiang University, Urumqi
来源
Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition) | 2018年 / 48卷 / 03期
关键词
Attention mechanism; Bidirectional-long short-term memory network; Temporal relation; Uyghur; Word embedding;
D O I
10.3969/j.issn.1001-0505.2018.03.003
中图分类号
学科分类号
摘要
As for the Uyghur event temporal relation identification problem, a model based on bidirectional-long short-term memory (Bi-LSTM) with attention mechanism is proposed. Based on the characteristics of Uyghur language and event temporal relation, 13 features of event internal structural information are extracted. The word embedding is introduced as the Bi-LSTM input to mine the context semantic information implied by a given event sentence. An attention mechanism is established with the event triggers to obtain the event semantic features of the given event sentence. The event internal structural features and the semantic features are combined to be the input of the softmax layer to complete the identification of event temporal relation. The experimental results show that the method can obtain the semantic information of the context and the implicit semantic features of the corresponding event sentence. After fusing the internal structural characteristics of the event, the identification precision rate is 89.42%; the recall rate is 86.70% and the F value for measuring the overall performance of the model is 88.03%,indicating the effectiveness of this method in the identification task of Uyghur event temporal relation. © 2018, Editorial Department of Journal of Southeast University. All right reserved.
引用
收藏
页码:393 / 399
页数:6
相关论文
共 38 条
  • [1] 结合注意力机制的Bi-LSTM维吾尔语事件时序关系识别
    田生伟
    胡伟
    禹龙
    吐尔根依布拉音
    赵建国
    李圃
    东南大学学报(自然科学版), 2018, 48 (03) : 393 - 399
  • [2] 基于Bi-LSTM和时序注意力的异常心音检测
    卢官明
    蔡亚宁
    卢峻禾
    戚继荣
    王洋
    赵宇航
    南京邮电大学学报(自然科学版), 2025, 45 (01) : 12 - 20
  • [3] 基于Bi-LSTM和注意力机制的命名实体识别
    刘晓俊
    辜丽川
    史先章
    洛阳理工学院学报(自然科学版), 2019, 29 (01) : 65 - 70+77
  • [4] 融合注意力机制和Bi-LSTM的情感分析
    邓翔
    科学技术创新, 2025, (09) : 93 - 96
  • [5] 基于Bi-LSTM的维吾尔语人称代词指代消解
    田生伟
    秦越
    禹龙
    吐尔根依布拉音
    冯冠军
    电子学报, 2018, 46 (07) : 1691 - 1699
  • [6] 结合注意力机制和Bi-LSTM的降雨型滑坡位移预测
    唐菲菲
    唐天俊
    朱洪洲
    胡川
    马英
    李昕
    测绘通报, 2022, (09) : 74 - 79+104
  • [7] 结合Bi-LSTM和注意力模型的问答系统研究
    邵曦
    陈明
    计算机应用与软件, 2020, 37 (10) : 52 - 56
  • [8] 融合词性的双注意力Bi-LSTM情感分析
    赵富
    杨洋
    蒋瑞
    张利君
    任晓雷
    计算机应用, 2018, 38(S2) (S2) : 103 - 106+147
  • [9] 融合注意力机制的Bi-LSTM页岩气产能预测方法
    朱仲义
    刘洪
    岳圣杰
    周鸿
    朱怡晖
    文宏川
    重庆科技学院学报(自然科学版), 2023, 25 (03) : 52 - 57
  • [10] 基于多注意力Bi-LSTM的恶意软件预测
    李红娇
    顾凡
    计算机工程与设计, 2023, 44 (12) : 3529 - 3535