共 44 条
- [21] Han S, Pool J, Tran J, Dally W., Learning both weights and connections for efficient neural network, Proc. of the 2015 MIT Press Conf. on Neural Information Processing Systems (NIPS), pp. 1135-1143, (2015)
- [22] Lebedev V, Lempitsky V., Fast ConvNets using group-wise brain damage, Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2016), pp. 2554-2564, (2016)
- [23] Molchanov P, Tyree S, Karras T, Aila T, Kautz J., Pruning convolutional neural networks for resource efficient inference, (2017)
- [24] Gong Y, Liu L, Yang M, Bourdev L., Compressing deep convolutional networks using vector quantization, (2014)
- [25] Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P., Deep learning with limited numerical precision, Proc. of the 32nd Int'l Conf. on Machine Learning (ICML), pp. 1737-1746, (2015)
- [26] Li F, Zhang B, Liu B., Ternary weight networks, (2016)
- [27] Courbariaux M, Bengio Y, David J., BinaryConnect: Training deep neural networks with binary weights during propagations, Proc. of the 2015 MIT Press Conf. on Neural Information Processing Systems (NIPS), pp. 3123-3131, (2015)
- [28] Chollet F., Xception: Deep learning with depthwise separable convolutions, Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1800-1807, (2017)
- [29] Zhang X, Zhou X, Lin M, Sun J., ShuffleNet: An extremely efficient convolutional neural network for mobile devices, Proc. of the 2018 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 6848-6856, (2018)
- [30] Hinton G, Vinyals O, Dean J., Distilling the knowledge in a neural network, (2015)