Experimental investigations of a novel phase change material and nano enhanced phase change material based passive battery thermal management system for Li-ion battery discharged at a high C rate

被引:8
|
作者
Bais, Aditya [1 ]
Subhedar, Dattatraya [1 ]
Panchal, Satyam [2 ]
机构
[1] Charotar Univ Sci & Technol, Chandubhai S Patel Inst Technol, CHAMOS Matrusanstha Dept Mech Engn, Changa, India
[2] Univ Waterloo, Mech & Mechatron Engn Dept, Waterloo, ON, Canada
关键词
Battery thermal management system; Phase change material; Nano PCM; LITHIUM-ION; PERFORMANCE; TEMPERATURE; MODULE;
D O I
10.1016/j.est.2024.114395
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Increasing energy demand from EVs requires the use of powerful Li-Ion batteries due to their high energy density and low self-discharge. But at high rates of discharge (C rate) Li-Ion batteries exhibit a rise in battery temperature due to which, they can exhibit erosion in their performance. At high temperatures (>50 degrees C), thermal runaway can occur leading to battery fire and explosion thus, eroding consumer confidence. The current study has experimentally investigated a novel Battery Thermal Management System (BTMS) using RT-47 as Phase Change Material (PCM) and enhancing it with gamma-Al2O3 nanoparticles at 0.5, 1, 1.5, 2 and 4 wt% concentrations making Nano-enhanced PCM (NePCM). Five battery packs were assembled based on selected NePCM after characterization i.e., bare, RT-47, 0.5, 1.0, 1.5 wt% NePCM. These packs were subjected to high discharge conditions at 3C discharge rate (12 A current draw) while monitoring their temperature and discharge times. Results showed the maximum temperature of all packs to be approx. 49.3, 43.0, 42.0, 42.0 and 44.0 degrees C respectively. A pack containing 0.5 wt% NePCM performed best with a discharge time of 1113s compared to less than 1000s for all other packs. Thus, 0.5 wt% NePCM based BTMS was selected as the best performer. Comparing the maximum temperature of similar studies, PA05 (43 degrees C) pack performed better than Hybrid BTMS with PCM and Liquid Cooling (45 degrees C) and Inorganic PCM based BTMS (64.20 degrees C) but performed worst compared to bi-NePCM arrangement
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery
    Wang, Zichen
    Zhang, Zhuqian
    Jia, Li
    Yang, Lixin
    APPLIED THERMAL ENGINEERING, 2015, 78 : 428 - 436
  • [22] Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack
    Wang, Fangxian
    Cao, Jiahao
    Ling, Ziye
    Zhang, Zhengguo
    Fang, Xiaoming
    ENERGY, 2020, 207
  • [23] Li-ion battery thermal management and thermal runaway suppression method of combining phase change material and annular thermoelectric cooler
    Liu, Xun
    Wu, Pan-Yun
    Su, Chu-Qi
    Xiong, Xin
    Wang, Yi-Ping
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [24] Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material
    Jiang, Guiwen
    Huang, Juhua
    Liu, Mingchun
    Cao, Ming
    APPLIED THERMAL ENGINEERING, 2017, 120 : 1 - 9
  • [25] Monte Carlo assisted sensitivity analysis of a Li-ion battery with a phase change material
    Kannan, Vishvak
    Fisher, Adrian
    Birgersson, Erik
    Journal of Energy Storage, 2021, 35
  • [26] Optimization of thermal management system for Li-ion batteries using phase change material
    Li, Yantong
    Du, Yaxing
    Xu, Tao
    Wu, Huijun
    Zhou, Xiaoqing
    Ling, Ziye
    Zhang, Zhengguo
    APPLIED THERMAL ENGINEERING, 2018, 131 : 766 - 778
  • [27] Thermal modeling of passive thermal management system with phase change material for LiFePO4 battery
    Cao Jianhua
    Gao Dawei
    Liu Jiexun
    Wei Jieyuan
    Lu Qingchun
    2012 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2012, : 436 - 440
  • [28] Monte Carlo assisted sensitivity analysis of a Li-ion battery with a phase change material
    Kannan, Vishvak
    Fisher, Adrian
    Birgersson, Erik
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [29] Rate capability and Ragone plots for designing battery thermal management system based on phase change material
    Lin, Xiang -Wei
    Zhou, Zhi-Fu
    Liu, Teng-Fei
    Xue, Shu-Qin
    Liang, Yong
    Zhang, Long-Fei
    Liu, Bing
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [30] Numerical optimization for a phase change material based lithium-ion battery thermal management system
    Wang, Shuping
    Zhang, Danfeng
    Li, Changhao
    Wang, Junkai
    Zhang, Jiaqing
    Cheng, Yifeng
    Mei, Wenxin
    Cheng, Siyuan
    Qin, Peng
    Duan, Qiangling
    Sun, Jinhua
    Wang, Qingsong
    APPLIED THERMAL ENGINEERING, 2023, 222