Stochastic gradient descent as approximate Bayesian inference

被引:0
|
作者
机构
[1] Mandt, Stephan
[2] Hof Fman, Matthew D.
[3] Blei, David M.
来源
| 1600年 / Microtome Publishing卷 / 18期
关键词
53;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Preconditioned Stochastic Gradient Descent
    Li, Xi-Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1454 - 1466
  • [32] APPROXIMATE BAYESIAN INFERENCE AS A FORM OF STOCHASTIC APPROXIMATION: A NEW CONSISTENCY THEORY WITH APPLICATIONS
    Chen, Ye
    Ryzhov, Ilya O.
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 534 - 544
  • [33] Stochastic Reweighted Gradient Descent
    El Hanchi, Ayoub
    Stephens, David A.
    Maddison, Chris J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [34] Stochastic gradient descent tricks
    Bottou, Léon
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 421 - 436
  • [35] Byzantine Stochastic Gradient Descent
    Alistarh, Dan
    Allen-Zhu, Zeyuan
    Li, Jerry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [36] Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
    Chaudhari, Pratik
    Soatto, Stefano
    2018 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2018,
  • [37] EFFORT ALLOCATION AND STATISTICAL INFERENCE FOR 1-DIMENSIONAL MULTISTART STOCHASTIC GRADIENT DESCENT
    Toscano-Palmerin, Saul
    Frazier, Peter
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1850 - 1861
  • [38] Approximate Bayesian inference in a model for self-generated gradient collective cell movement
    Devlin, Jon
    Borowska, Agnieszka
    Husmeier, Dirk
    Mackenzie, John
    COMPUTATIONAL STATISTICS, 2025,
  • [39] Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models
    McKinley, Trevelyan J.
    Vernon, Ian
    Andrianakis, Ioannis
    McCreesh, Nicky
    Oakley, Jeremy E.
    Nsubuga, Rebecca N.
    Goldstein, Michael
    White, Richard G.
    STATISTICAL SCIENCE, 2018, 33 (01) : 4 - 18
  • [40] Distortion estimates for approximate Bayesian inference
    Xing, Hanwen
    Nicholls, Geoff
    Lee, Jeong Eun
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1208 - 1217