Compressible flows of viscous fluid in 3d channel

被引:0
|
作者
Pořízková, Petra [1 ]
Kozel, Karel [2 ]
Horáček, Jaromír [2 ]
机构
[1] Czech Technical University in Prague, Karlovo námĕstí13, Prague 2,121 35, Czech Republic
[2] Institute of Thermomechanics Academy of Sciences, Dolejškova 5, Prague 8, Czech Republic
关键词
Numerical methods - Viscosity - Air - Compressible flow - Finite volume method - Incompressible flow - Navier Stokes equations - Reynolds number - Viscous flow;
D O I
10.1007/978-3-319-10705-9_65
中图分类号
学科分类号
摘要
This study deals with the numerical solution of a 3D compressible flow of a viscous fluid in a channel for low inlet airflow velocity. The channel is a simplified model of the glottal space in the human vocal tract. The system of Navier-Stokes equations has been used as mathematical model of laminar flow of the compressible viscous fluid in a domain. The numerical solution is implemented using the finite volume method (FVM) and the predictor-corrector MacCormack scheme with artificial viscosity using a grid of hexahedral cells. The numerical simulations of flow fields in the channel, acquired from a developed program, are presented for inlet velocity û∞=4:12 ms_1and Reynolds number Re∞= 4;481. © Springer International Publishing Switzerland 2015.
引用
收藏
页码:661 / 666
相关论文
共 50 条
  • [41] Numerical Solution of 2D and 3D Unsteady Viscous Flows
    Kozel, K.
    Louda, P.
    Prihoda, J.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 473 - +
  • [42] Compressible Nonlinearly Viscous Fluids: Asymptotic Analysis in a 3D Curved Domain
    Richard Andrášik
    Rostislav Vodák
    Journal of Mathematical Fluid Mechanics, 2019, 21
  • [43] Compressible Nonlinearly Viscous Fluids: Asymptotic Analysis in a 3D Curved Domain
    Andrasik, Richard
    Vodak, Rostislav
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (01)
  • [44] ON FLOWS OF A COMPRESSIBLE FLUID
    BERGMAN, S
    PHYSICAL REVIEW, 1949, 76 (06): : 876 - 876
  • [45] Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows
    Feireisl, Eduard
    Novotny, Antonin
    Petzeltova, Hana
    MATHEMATISCHE ANNALEN, 2013, 356 (02) : 683 - 702
  • [46] Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows
    Eduard Feireisl
    Antonín Novotný
    Hana Petzeltová
    Mathematische Annalen, 2013, 356 : 683 - 702
  • [48] A regularity criterion for 3D micropolar fluid flows
    He, Xiaowei
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (01) : 47 - 51
  • [49] NONSYMMETRIC BRANCHING OF FLUID FLOWS IN 3D VESSELS
    Ovenden, N. C.
    Smith, F. T.
    ANZIAM JOURNAL, 2018, 59 (04): : 533 - 561
  • [50] Global Regularity for the 3D Micropolar Fluid Flows
    Alghamdi, Ahmad M.
    Gala, Sadek
    Ragusa, Maria Alessandra
    FILOMAT, 2022, 36 (06) : 1967 - 1970