H2 production and CO2 separation

被引:0
|
作者
Donato A.D. [1 ]
机构
[1] Centro Sviluppo Materiali, S.p.A, 00128 Rome, Via di Castel Romano
来源
Green Energy and Technology | 2011年 / 64卷
关键词
D O I
10.1007/978-0-85729-540-8_7
中图分类号
学科分类号
摘要
A promising technology for H2 production and CO2 separation is based on water gas shift reaction operated in water gas shift membrane reactor (WGSMR). In such a reactor the synthetic gas reacts with steam in a catalytic bed to produce additional hydrogen and CO2. A H2 selective membrane allows the simultaneous production of hydrogen at a high purity level and a stream of concentrated CO2. The performance of such a reactor is defined in terms of CO conversion fraction, H2 recovered fraction and produced H2 flow rate. The chapter deals with the modelling of a WGSMR. A model developed to assist the design of a pilot scale, tube-in-tube reactor, is described. Simulations with the model are presented and discussed. The simulations were performed to analyse the effect of operating conditions (H2O/CO ratio, temperature, pressure and syngas flow rate), catalyst characteristics (catalytic bed efficiency, void fraction) and membrane length, on the reactor performance. The results provide quantitative information to define the set of conditions to obtain the target value of the H2 flow rate, with high values of CO conversion fraction and H2 recovered fraction, minimising the length of the H2 selective membrane. A last paragraph is dedicated to a short analysis of the main issues and foreseen solutions for the industrial application of the technology. © Springer-Verlag London Limited 2011.
引用
收藏
页码:145 / 167
页数:22
相关论文
共 50 条
  • [1] Structure and Composition of CO2/H2 and CO2/H2/C3H8 Hydrate in Relation to Simultaneous CO2 Capture and H2 Production
    Kumar, Rajnish
    Englezos, Peter
    Moudrakovski, Igor
    Ripmeester, John A.
    AICHE JOURNAL, 2009, 55 (06) : 1584 - 1594
  • [2] Autothermal reforming of impure glycerol for H2 production: Thermodynamic study including in situ CO2 and/or H2 separation
    Leal, A. L.
    Soria, M. A.
    Madeira, L. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2607 - 2620
  • [3] CO2/H2 separation using polymers.
    Lin, H
    Jiang, X
    Patel, NP
    Spontak, RJ
    Freeman, BD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U353 - U353
  • [4] Separation of CO2 and H2 with modified MFI membranes
    Lindmark, J.
    Hedlund, J.
    FROM ZEOLITES TO POROUS MOF MATERIALS: THE 40TH ANNIVERSARY OF INTERNATIONAL ZEOLITE CONFERENCE, PROCEEDINGS OF THE 15TH INTERNATIONAL ZEOLITE CONFERENCE, 2007, 170 : 975 - 980
  • [6] CO2 CAPTURE USING CALCIUM OXIDE APPLICABLE TO IN-SITU SEPARATION OF CO2 FROM H2 PRODUCTION PROCESSES
    Kenarsari, Saeed Danaei
    Zheng, Yuan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6A, 2014,
  • [7] Efficient ceramic zeolite membranes for CO2/H2 separation
    Korelskiy, D.
    Fouladvand, P. Ye S.
    Karimi, S.
    Sjoberg, E.
    Hedlund, J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) : 12500 - 12506
  • [8] Oxidatively stable membranes for CO2 separation and H2 purification
    Vakharia, Varun
    Salim, Witopo
    Gasda, Michael
    Ho, W. S. Winston
    JOURNAL OF MEMBRANE SCIENCE, 2017, 533 : 220 - 228
  • [9] Optimal activated carbon for separation of CO2 from (H2 + CO2) gas mixture
    Zhang, Xiao-Xin
    Xiao, Peng
    Sun, Chang-Yu
    Luo, Gen-Xiang
    Ju, Jia
    Wang, Xiao-Rong
    Wang, Hao-Xuan
    Yang, Hao
    PETROLEUM SCIENCE, 2018, 15 (03) : 625 - 633
  • [10] An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes
    Franz, J.
    Scherer, V.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 359 (1-2) : 173 - 183