Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments

被引:0
|
作者
Abadel, Aref A. [1 ]
Alharbi, Yousef R. [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
来源
MATERIALS SCIENCE-POLAND | 2024年 / 42卷 / 03期
关键词
Concrete cylinder; CFRP; Compression strength; Elevated temperature; Finite element; Fiber-reinforced concrete; Strengthening; MECHANICAL-PROPERTIES; ELEVATED-TEMPERATURES; RESIDUAL STRENGTH; SHEAR BEHAVIOR; STEEL; COLUMNS; PERFORMANCE; RESISTANCE; POLYPROPYLENE; SQUARE;
D O I
10.2478/msp-2024-0029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reinforced concrete constructions are extremely vulnerable to fire damage over their lifespan. Despite its non-flammability, concrete is nonetheless affected by fire exposure, which impacts its stress-strain characteristics and durability. Therefore, developing strengthening methods is an economical option compared to the costs of demolishing and rebuilding constructions. This article aims to experimentally and numerically examine the strengthening of fiber-reinforced concrete cylinders by using carbon fiber-reinforced polymer (CFRP) strips after exposure to 600 degrees C. Four different concrete mixtures have been investigated. A total of 48 cylinders were subjected to axial compression testing. The testing program primarily focused on three variables: (i) exposure temperature (600 degrees C); (ii) the effect of using various types of fibers (steel fiber, polypropylene, and hybrid fibers); and (iii) CFRP strengthening. Finite element (FE) models were created using the ABAQUS program to conduct numerical analysis of concrete cylinders in exposure to heating scenarios and strengthen them with CFRP strips. The results show that when subjected to a temperature of 600 degrees C, the compressive strength decreased significantly, ranging from 23.7 to 53.3%. The presence of fibers significantly impacted compressive strength, regardless of the fiber type, leading to an enhanced ratio of up to 34.7% in comparison to the control cylinders (i.e., unheated and unstrengthened cylinders). The suggested strengthening procedures using CFRP strips effectively repaired the heat-damaged cylinders, surpassing the initial compressive strength of unheated cylinders. The FE prediction shows satisfactory, consistent results in comparison to experimental data.
引用
收藏
页码:17 / 38
页数:22
相关论文
共 50 条
  • [41] Electrochemical behavior of coupled carbon fiber-reinforced polymer (CFRP) rods in concrete
    Torres-Acosta, AA
    Sen, R
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2005, 35 (06) : 529 - 537
  • [42] Electrochemical behavior of coupled carbon fiber-reinforced polymer (CFRP) rods in concrete
    A.A. Torres-Acosta
    R. Sen
    Journal of Applied Electrochemistry, 2005, 35 : 529 - 537
  • [43] Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars
    Attia, Karim
    Alnahhal, Wael
    Elrefai, Ahmed
    Rihan, Yousef
    COMPOSITE STRUCTURES, 2019, 211 : 1 - 12
  • [44] Flexural and Shear Behavior of Reinforced Concrete Members Strengthened with a Discrete Fiber-Reinforced Polyurea System
    Greene, Courtney E.
    Myers, John J.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2013, 17 (01) : 108 - 116
  • [45] Fatigue and Flexural Behavior of Reinforced-Concrete Beams Strengthened with Fiber-Reinforced Cementitious Matrix
    Aljazaeri, Zena R.
    Myers, John J.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (01)
  • [46] Compressive behavior of reinforced steel-PVA hybrid fiber concrete short columns after high temperature exposure
    Xiao, Liangli
    Chen, Panhong
    Huang, Jinsong
    Peng, Shuang
    Yang, Zhao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 342
  • [47] Flexural behavior of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and ECC
    Liu, Dawei
    Qin, Fengjiang
    Di, Jin
    Zhang, Zhigang
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 19
  • [48] Behavior of Reinforced Concrete Beams without Stirrups and Strengthened with Basalt Fiber-Reinforced Polymer Sheets
    Zhang, Wei
    Kang, Shuaiwen
    Huang, Yiqun
    Liu, Xiang
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2023, 27 (02)
  • [49] Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips
    Barris, Cristina
    Sala, Pau
    Gomez, Javier
    Torres, Lluis
    COMPOSITE STRUCTURES, 2020, 241 (241)
  • [50] Flexural behavior of concrete beams reinforced with carbon fiber-reinforced polymer (CFRP) prestressed prisms
    Svecova, D
    Razaqpur, AG
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 731 - 738