Research of hydrodynamic parameter identification for underwater vehicle using swarm intelligence algorithm

被引:0
|
作者
Chen, Wei-Qi [1 ,2 ]
Yan, Kai [2 ]
Shi, Gan-Jun [2 ]
Wang, Shi-Tong [1 ]
Liu, Zhi-Yong [2 ]
机构
[1] Southern Yangtze University, Wuxi 214026, China
[2] China Ship Scientific Research Center, Wuxi 214082, China
来源
关键词
Algorithms - Autonomous underwater vehicles - Computer simulation - Differential equations - Experiments - Functions - Matrix algebra - Nonlinear equations;
D O I
暂无
中图分类号
学科分类号
摘要
Based on underwater vehicle's nonlinear differential equation and observation equations, swarm intelligence algorithm is used to identify ten hydrodynamic parameters from simulation observed data of the motions of underwater vehicle. Experimental results show that this method is highly effective and efficient, and moreover it has no requirements on the differentiability and continuity of the objective function, and consequently does not need to perform complex matrix calculations, so this method is suitable, for applications in identification of nonlinear hydrodynamics of complex system.
引用
收藏
页码:40 / 46
相关论文
共 50 条
  • [21] Unmanned vehicle navigation using swarm intelligence
    Doctor, S
    Venayagamoorthy, GK
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INTELLIGENT SENSING AND INFORMATION PROCESSING, 2004, : 249 - 253
  • [22] Research on the Method of Numerical Calculation for Hydrodynamic Parameters of Underwater Vehicle
    Hu, Jinhui
    Hu, Dabin
    Xiao, Jianbo
    MECHANICAL ENGINEERING AND INSTRUMENTATION, 2014, 526 : 121 - 126
  • [23] Parameter identification for a water quality model using two hybrid swarm intelligence algorithms
    Guangzhou Chen
    Jiaquan Wang
    Ruzhong Li
    Soft Computing, 2016, 20 : 2829 - 2839
  • [24] Parameter identification for a water quality model using two hybrid swarm intelligence algorithms
    Chen, Guangzhou
    Wang, Jiaquan
    Li, Ruzhong
    SOFT COMPUTING, 2016, 20 (07) : 2829 - 2839
  • [25] Research on Parameter Identification of Battery Model Based on Adaptive Particle Swarm Optimization Algorithm
    Zhang, D. H.
    Zhu, G. R.
    Bao, J.
    Ma, Y.
    He, S. J.
    Qiu, S.
    Chen, W.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (07) : 1362 - 1367
  • [26] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +
  • [27] Parameter identification of electrostatic discharge model using particle swarm optimization algorithm
    Wang, Xiao-Dong
    Wang, Ke
    Wang, Jin-Shan
    Zhang, Hao-Ran
    Gaodianya Jishu/High Voltage Engineering, 2010, 36 (02): : 434 - 438
  • [28] Offline experimental parameter identification using on-board sensors for an Autonomous Underwater Vehicle
    Natarajan, Sankaranarayanan
    Gaudig, Christopher
    Hildebrandt, Marc
    2012 OCEANS, 2012,
  • [29] Implementation of swarm intelligence algorithm on Autonomous Surface Vehicle (ASV)
    Nugroho, C. A.
    Vidura, A.
    Rahman, M. R.
    Iqbal, M.
    Satria, M. G. A.
    Jaya, I
    3RD INTERNATIONAL CONFERENCE ON MARINE SCIENCE (ICMS) 2019 - TOWARDS SUSTAINABLE MARINE RESOURCES AND ENVIRONMENT, 2020, 429
  • [30] Identification of Hydrodynamic Coefficients for Underwater Vehicles using Laser Line Scanning and Genetic Algorithm
    Chou, Yu-Cheng
    Nakajima, Madoka
    Wang, Chau-Chang
    Chen, Hsin-Hung
    OCEANS 2017 - ABERDEEN, 2017,