Generic two-variable model of excitability

被引:7
|
作者
Ventura, A.C. [1 ]
Mindlin, G.B. [1 ]
Dawson, S. Ponce [1 ]
机构
[1] Departamento de Física, FCEN, UBA Ciudad Universitaria, Pabellón 1, 1428, Buenos Aires, Argentina
关键词
Algorithms - Bifurcation (mathematics) - Diffusion - Ionic conduction - Perturbation techniques;
D O I
10.1103/PhysRevE.65.046231
中图分类号
学科分类号
摘要
We present a simple model that displays all classes of two-dimensional excitable regimes. One of the variables of the model displays the usual spikes observed in excitable systems. Since the model is written in terms of a standard vector field, it is always possible to fit it to experimental data displaying spikes in an algorithmic way. In fact, we use it to fit a series of membrane potential recordings obtained in the medicinal leech and time series generated with the FitzHugh-Nagumo equations and the excitability model of Egui´a et al. [Phys. Rev. E 58, 2636 (1998)]. In each case, we determine the excitability class of the corresponding system. © 2002 The American Physical Society.
引用
收藏
页码:1 / 046231
相关论文
共 50 条
  • [31] Cliquishness and Quasicontinuity of Two-Variable Maps
    Bouziad, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (01): : 55 - 64
  • [32] A two-variable linear programming problem
    Tran, D
    Alex, R
    CSC '05: Proceedings of the 2005 International Conference on Scientific Computing, 2005, : 205 - 216
  • [33] Undecidability results on two-variable logics
    Gradel, E
    Otto, M
    Rosen, E
    STACS 97 - 14TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1997, 1200 : 249 - 260
  • [34] Two-variable linear programming in parallel
    Chen, DZ
    Xu, JH
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 21 (03): : 155 - 165
  • [35] A two-variable model of somatic-dendritic interactions in a bursting neuron
    Carlo R. Laing
    André Longtin
    Bulletin of Mathematical Biology, 2002, 64 : 829 - 860
  • [36] Formulae for two-variable Green functions
    Digne, Francois
    Michel, Jean
    JOURNAL OF ALGEBRA, 2022, 610 : 270 - 280
  • [37] A two-variable series for knot complements
    Gukov, Sergei
    Manolescu, Ciprian
    QUANTUM TOPOLOGY, 2021, 12 (01) : 1 - 109
  • [38] A note on the two-variable expansion method
    Hu, H.
    Zheng, M. Y.
    ACTA MECHANICA, 2011, 216 (1-4) : 351 - 357
  • [39] A note on a family of two-variable polynomials
    Aktas, Rabia
    Altin, Abdullah
    Tasdelen, Fatma
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4825 - 4833
  • [40] On wave trains arising in the two-variable Oregonator model for the BZ reaction
    Merkin, J. H.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (03) : 513 - 536