Creep strengthening mechanism of Mo and W in 9% Cr heat resistant steels

被引:0
|
作者
机构
[1] Muraki, T.
[2] Hasegawa, Y.
[3] Ohgami, M.
关键词
Chromium - Creep - Extraction - Heat resistance - Molybdenum - Phase composition - Precipitation (chemical) - Solid solutions - Strengthening (metal) - Temperature - Tungsten;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, precise investigation on the 9 mass% chromium ferritic steels with up to 2 mass% molybdenum or 4 mass% tungsten extracts the contribution of molybdenum and tungsten to the strengthening mechanism. The creep rupture strengths of molybdenum containing steels increase with molybdenum content because of the molybdenum in solid solution and stabilized M23C6 by molybdenum. The extended transient creep stage implies the effective precipitation strengthening effect of the stabilized M23C6. Also, estimated creep rupture strength increases with tungsten content increases up to 2 mass%. But in case of tungsten containing steels, precipitation of Laves phase possibly contributes the lath structure stabilization. The resolution temperature difference between Fe2W type Laves phase and Fe2Mo type Laves phase explains the difference of precipitation strengthening effects for molybdenum and tungsten containing steels.
引用
收藏
相关论文
共 50 条
  • [21] Difference in Reheat Cracking Susceptibility of 2.25Cr-W and 9Cr-W Heat-resistant Steels
    Sung, Hyun Je
    Heo, Nam Hoe
    Kim, Sung-Joon
    ISIJ INTERNATIONAL, 2017, 57 (07) : 1268 - 1272
  • [22] Effects of oxidation-resistant coating on creep behavior of modified 9Cr-1Mo steels
    Zhang, X. Z.
    Wu, X. J.
    Liu, R.
    Yao, M. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 743 : 418 - 424
  • [23] The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels
    Prat, O.
    Garcia, J.
    Rojas, D.
    Sauthoff, G.
    Inden, G.
    INTERMETALLICS, 2013, 32 : 362 - 372
  • [24] 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C
    Rojas, D.
    Garcia, J.
    Prat, O.
    Sauthoff, G.
    Kaysser-Pyzalla, A. R.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (15): : 5164 - 5176
  • [25] Examining the creep strengthening nanoprecipitation in novel highly reinforced heat resistant steels
    Vivas, J.
    Poplawsky, Jonathan D.
    De-Castro, David
    San-Martin, D.
    Capdevila, C.
    MATERIALS CHARACTERIZATION, 2021, 174
  • [26] Creep Deformation Behaviour and its Effect on Creep Life and Rupture Ductility of W-Mo-balanced 9Cr Steels
    Abe, Fujio
    MATERIALS AT HIGH TEMPERATURES, 2020, 37 (03) : 165 - 177
  • [27] Advances in Welded Creep Resistant 9-12% Cr Steels
    Abson, D. J.
    Rothwell, J. S.
    Cane, B. J.
    ADVANCES IN MATERIALS TECHNOLOGY FOR FOSSIL POWER PLANTS, 2008, : 790 - 808
  • [28] Phase transformation and mechanism on enhanced creep-life in P9 Cr-Mo heat-resistant steel
    Cheng, Chun-Der
    Chen, Pin-Yi
    Tu, Chi-Shun
    Chen, Cheng-Sao
    Feng, Kuei-Chih
    Yu, Hsiao-Yao
    Lee, Yi-Tsung
    Chien, R. R.
    Anthoniappen, J.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (03): : 4617 - 4630
  • [29] Microstructural evolution during creep test in 9Cr-2W-V-Ta steels and 9Cr-1 Mo-V-Nb steels
    Hasegawa, T
    Abe, YR
    Tomita, Y
    Maruyama, N
    Sugiyama, M
    ISIJ INTERNATIONAL, 2001, 41 (08) : 922 - 929
  • [30] Creep rates and strengthening mechanisms in tungsten-trengthened 9Cr steels
    Abe, F
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 : 770 - 773