Isobaric compressed air energy storage system: Water compensating cycle or CO2 compensating cycle?

被引:0
|
作者
Yang, Shanju [1 ]
Zhang, Yao [2 ]
Gao, Zening [1 ]
Liu, Zhan [2 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
关键词
Isobaric storage; Air energy storage; Selection map; Thermodynamics and economics; THERMODYNAMIC ANALYSIS; CAES; PERFORMANCE; SIMULATION;
D O I
10.1016/j.energy.2024.133682
中图分类号
O414.1 [热力学];
学科分类号
摘要
Isobaric operation of air storage can remove the throttling losses existing in isochoric reservoir, making full use of the storage volume and lowering system construction cost. The water cycle and CO2 cycle are two of the most commonly configurations to stabilize the pressure in the air storage unit. The choice between the two cycles depends on whether the technical complexity and costs are justified by performance gains. This paper mainly focuses on developing the MAP design, a kindly selection diagram plotting the better value of performance indicators between the two systems, to determine the more favorable compensating cycle in the constant storage operation of the compressed air. The analysis results indicate that higher air storage pressure increases the system efficiency. The levelized cost of storage is provided with a valley value when the air storage pressure is at 6.6 MPa for the CO2 cycle and 14 MPa for the water cycle. The optimized systems can share a comparative efficiency of 68.04 % and 68.07 %, and the levelized cost of storage is 0.8237 & YEN;/kWh for the CO2 cycle and 0.7869 & YEN;/kWh for the water cycle. The water is suggested to be the compensating fluid for the isobaric system when the water machine efficiency is higher than 0.85 or else opting for CO2 proves to be a more economically viable choice.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Integrating Compressed CO2 Energy Storage in an Integrated Energy System
    Huang, Qingxi
    Song, Yongxin
    Sun, Qie
    Ren, Xiaohan
    Wang, Wei
    ENERGIES, 2024, 17 (07)
  • [12] THERMAL ENERGY STORAGE FOR THE SUPERCRITICAL CO2 BRAYTON CYCLE
    Bueno, P. C.
    Bates, L.
    Anderson, R.
    Bindra, H.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [13] Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system
    Peng, Yirui
    Gao, Jianmin
    Zhang, Yu
    Zhang, Jin
    Sun, Qiaoqun
    Du, Qian
    Tang, Zhipei
    Zhang, Tianhang
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [14] Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle
    Zhao, Pan
    Wang, Jiangfeng
    Dai, Yiping
    ENERGY CONVERSION AND MANAGEMENT, 2015, 98 : 161 - 172
  • [15] Theoretical Performance Limits of an Isobaric Hybrid Compressed Air Energy Storage System
    Houssainy, Sammy
    Janbozorgi, Mohammad
    Kavehpour, Pirouz
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (10):
  • [16] Numerical investigation of cycle performance in compressed air energy storage in aquifers
    Yang, Lichao
    Cai, Zuansi
    Li, Cai
    He, Qingcheng
    Ma, Yan
    Guo, Chaobin
    APPLIED ENERGY, 2020, 269
  • [17] Comprehensive thermo-economic analysis of an isobaric compressed CO2 energy storage system: Improvement of the thermodynamic pathway
    Xu, Wenpan
    Zhao, Pan
    Wang, Jiangfeng
    Yang, Wenming
    ENERGY CONVERSION AND MANAGEMENT, 2024, 322
  • [18] Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle
    Sadreddini, Amirhassan
    Fani, Maryam
    Aghdam, Muhammadan. Ashjari
    Mohammadi, Amin
    ENERGY CONVERSION AND MANAGEMENT, 2018, 157 : 111 - 122
  • [19] Thermodynamic analysis of photothermal-assisted liquid compressed CO2 energy storage system hybrid with closed-cycle drying
    Fu, Hailun
    Shi, Juan
    Yuan, Junqiu
    Sun, Li
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [20] Design and performance analysis of compressed CO2 energy storage of a solar power tower generation system based on the S-CO2 Brayton cycle
    Liu, Yifei
    Wang, Yuanjing
    Zhang, Yanping
    Hu, Song
    Zhang, Yanping (zyp2817@hust.edu.cn), 1600, Elsevier Ltd (249):