Contamination in Bone Substitute Materials: A Systematic Review

被引:1
|
作者
Struzik, Natalia [1 ]
Kensy, Julia [2 ]
Piszko, Pawel J. [3 ]
Kiryk, Jan [4 ]
Wisniewska, Kamila [4 ]
Kiryk, Sylwia [3 ]
Korjat, Luksza [5 ]
Horodniczy, Tomasz [6 ]
Sobierajska, Paulina [7 ]
Matys, Jacek [4 ]
Wiglusz, Rafal J. [7 ,8 ]
Dobrzynski, Maciej [3 ]
机构
[1] Wroclaw Med Univ, Preclin Res Ctr, Bujwida 44, PL-50368 Wroclaw, Poland
[2] Med Univ Wroclaw, Fac Dent, PL-50425 Wroclaw, Poland
[3] Wroclaw Med Univ, Dept Pediat Dent & Preclin Dent, Krakowska 26, PL-50425 Wroclaw, Poland
[4] Wroclaw Med Univ, Dent Surg Dept, Krakowska 26, PL-50425 Wroclaw, Poland
[5] Kor4dent Lukasz Korjat, Brzeska 12, PL-49318 Skarbimierz Osiedle, Poland
[6] Ortho pl Ctr Zdrowego Usmiechu, Buforowa 34, PL-52131 Wroclaw, Poland
[7] PAS, Inst Low Temp & Struct Res, Okolna 2, PL-50422 Wroclaw, Poland
[8] Silesian Tech Univ, Fac Chem, Dept Organ Chem Bioorgan Chem & Biotechnol, Krzywoustego 4, PL-44100 Gliwice, Poland
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
bone substitutes; bone regeneration; graft contamination; allogeneic; xenogeneic; XENOGENEIC BONE; IN-VITRO; HYDROXYAPATITE; GRAFTS; RECONSTRUCTION;
D O I
10.3390/app14188266
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Objective: Bone augmentation has become a significant practice in various areas of bone regeneration dentistry. This systematic review analyzes the research focused on evaluating bone substitute materials for the presence of contaminants. Methods: In June 2024, an extensive electronic search was conducted using renowned databases such as PubMed, Web of Science, and Scopus. Specific keywords employed in the search included ((bone AND (substitute) AND (remnants OR (purity)) OR ((graft AND tooth) AND (remnants OR purity)) OR ((graft AND dentin) AND (remnants OR purity)). The search adhered to the PRISMA protocol and the PICO framework. The review concentrated on the origin of bone substitute materials, the processing methods used for these materials, techniques for assessing purity, and types of contamination identified. A total of 594 articles were identified of which 22 met the criteria and were incorporated into the review. Results: Investigations into allogeneic and xenogeneic bone substitute materials have revealed that, despite manufacturers' assurances of purity, some materials still contain contaminants. Sample analyses demonstrated the presence of donor cellular remains, cellular debris, intertrabecular fat, connective tissue, and collagen. Similarly, synthetically produced bone substitute materials (alloplastic materials) contained various impurities, such as polyvinyl alcohol (PVA), CaO phases, calcium-deficient HAp phases, oily substances containing carbon and silicone, cellulose derivatives, alpha-tricalcium phosphate (alpha-TCP), and heavy metals. Conclusions: Bone-derived and bone-like graft materials can contain various organic and inorganic impurities.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Histomorphometric Assessment of Non-Decalcified Plastic-Embedded Specimens for Evaluation of Bone Regeneration Using Bone Substitute Materials-A Systematic Review
    Rogova, Varvara-Velika
    Peev, Stefan
    Yotsova, Ralitsa
    Gerova-Vatsova, Tsvetalina
    Parushev, Ivaylo
    MATERIALS, 2025, 18 (01)
  • [12] Chitosan as Bone Scaffold and Graft Materials for Bone Regeneration: A Systematic Review
    Wahjuningrum, Dian Agustin
    Setyabudi
    Cahyani, Febriastuti
    Setiawan, Fery
    Dianti, Eska
    Sampoerno, Galih
    Saraswati, Widya
    Nurdianto, Arif Rahman
    Bhardwaj, Anuj
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (05): : 541 - 549
  • [13] Preclinical evaluation of injectable bone substitute materials
    Bongio, Matilde
    van den Beucken, Jeroen J. J. P.
    Leeuwenburgh, Sander C. G.
    Jansen, John A.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2015, 9 (03) : 191 - 209
  • [14] Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials
    Niu, Yumiao
    Du, Tianming
    Liu, Youjun
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (04)
  • [15] AUTOGENOUS DENTIN AS A BONE SUBSTITUTE: A REVIEW
    Shidfar, S. H.
    Semyari, H.
    Khoshzaban, A.
    Taleghani, F.
    Shanei, F.
    Tayid, H.
    Baghani, M. T.
    ANNALS OF DENTAL SPECIALTY, 2018, 6 (03): : 333 - 337
  • [16] Natural hydroxyapatite/chitosan composite for bone substitute materials
    Yuan Hua
    Chen Ning
    Lu Xiaoying
    Zheng Buzhong
    Cui Wei
    Song Xiaoling
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4888 - 4891
  • [17] The development of load-bearing bone substitute materials
    Ward, IM
    Bonfield, W
    Ladizesky, NH
    POLYMER INTERNATIONAL, 1997, 43 (04) : 333 - 337
  • [18] Development of bone substitute materials: from 'biocompatible' to 'instructive'
    Bongio, Matilde
    van den Beucken, Jeroen J. J. P.
    Leeuwenburgh, Sander C. G.
    Jansen, John A.
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (40) : 8747 - 8759
  • [19] Osteointegration of different bone substitute materials in an experimental model
    Gunther, KP
    Scharf, HP
    Pesch, HJ
    Puhl, W
    ORTHOPADE, 1998, 27 (02): : 105 - 117
  • [20] Octacalcium phosphate (OCP)-based bone substitute materials
    Suzuki, Osamu
    JAPANESE DENTAL SCIENCE REVIEW, 2013, 49 (02) : 58 - 71