Computational and Experimental Study of Detonation Propagation in TATB-Based Cylindrical Charges

被引:0
|
作者
Erastov, A. V. [1 ]
Zmushko, V. V. [1 ]
Zmushko, T. I. [1 ]
Panov, K. N. [1 ]
机构
[1] Russian Fed Nucl Ctr, Inst Expt Phys VNIIEF, Inst Gas Dynam & Explos Phys, Inst Theoret & Math Phys, Sarov 607190, Russia
关键词
explosive composition; shock wave; detonation; X-ray diffraction; initiation; kinetics; numerical simulation; INITIATION; EXPLOSIVES; DIAMETER; DENSITY; STATE;
D O I
10.1134/S0010508224020102
中图分类号
O414.1 [热力学];
学科分类号
摘要
A detonation propagation process in a charge made of a plastic-bonded triamino-trinitrobenzene-based explosive composition in the form of a hollow cylinder with a steel shell inside is studied in the case where normal detonation is initiated along a line on the outer surface of the charge. The shape of a detonation wave front at certain times is determined using the X-ray method. Electric contact sensors are applied to measure the detonation wave front propagation velocity along the outer surface of the charge. The original arrangement of the experiments makes it possible to study detonation propagation at angles greater than 180 degrees from the initiation line. It is shown that the front velocity of the diverging detonation wave in the initiation plane is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}7.3 km/s. In the shadow region of the initiation point, the front velocity of the diverging detonation wave decreases as a function of a distance traveled both along the outer and inner surface of the charge (up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}6 km/s and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}5.6 km/s, respectively). At the same time, there is a zone of unreacted triamino-trinitrobenzene near the steel shell in the region where the rotation angles of the detonation wave front range from approximately 150 to 210 degrees. This may indicate detonation failure and transformation into a shock wave. The process is numerically simulated using the SURF detonation kinetics model implemented in MIMOSA. The calculation results are in good agreement with experimental data both at the early stage of the detonation initiation process and in the shadow region of the initiation point, where the detonation wave front velocity drops.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 50 条
  • [21] Physical model for shock-wave initiation of detonation of plastic-bounded TATB-based explosive
    Grebenkin, K. F.
    Zherebtsov, A. L.
    Taranik, M. V.
    Tsarenkova, S. K.
    Shnitko, A. S.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2006, 42 (05) : 598 - 606
  • [22] Physical model for shock-wave initiation of detonation of plastic-bounded TATB-based explosive
    K. F. Grebenkin
    A. L. Zherebtsov
    M. V. Taranik
    S. K. Tsarenkova
    A. S. Shnitko
    Combustion, Explosion and Shock Waves, 2006, 42 : 598 - 606
  • [23] Theoretical study on binding energies and mechanical properties of TATB-based PBX
    Xiao, JJ
    Gu, CG
    Fang, GY
    Zhu, W
    Xiao, HM
    ACTA CHIMICA SINICA, 2005, 63 (06) : 439 - 444
  • [24] Detonation Wave Propagation in Double-layer Cylindrical High Explosive Charges
    Zhang, Xian-feng
    Huang, Zheng-xiang
    Qiao, Liang
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2011, 36 (03) : 210 - 218
  • [25] Experimental measurements of the detonation wave profile in a TATB based explosive
    Bouyer, V.
    Doucet, M.
    Decaris, L.
    NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER, 2010, 10
  • [26] RAMAN SPECTROSCOPY STUDY OF LASER-SHOCKED TATB-BASED EXPLOSIVES
    Hebert, P.
    Bouyer, V.
    Rideau, J.
    Doucet, M.
    Terzulli, L. P.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [27] Highly Thermal Stable TATB-based Aluminized Explosives Realizing Optimized Balance between Thermal Stability and Detonation Performance
    Gong, Feiyan
    Guo, Hu
    Zhang, Jianhu
    Shen, Chunying
    Lin, Congmei
    Zeng, Chengcheng
    Liu, Shijun
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2017, 42 (12) : 1424 - 1430
  • [28] Computational study of detonation wave propagation in narrow channels
    Chinnayya, Ashwin
    Hadjadj, Abdellah
    Ngomo, Davy
    PHYSICS OF FLUIDS, 2013, 25 (03)
  • [29] Numerical Study On Tailoring The Shock Sensitivity Of TATB-Based Explosives Using Sub-Millimeter Features
    Springer, H. Keo
    Tarver, C. M.
    Gambino, J. R.
    White, B. W.
    Sullivan, K. T.
    Gash, A. E.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [30] Study on crack propagation law of cylindrical charges in three-dimensional models
    Guo Y.
    Li Q.
    Yang R.
    Xu P.
    Wang Y.
    Huo S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (10): : 133 - 140and184