Computational and Experimental Study of Detonation Propagation in TATB-Based Cylindrical Charges

被引:0
|
作者
Erastov, A. V. [1 ]
Zmushko, V. V. [1 ]
Zmushko, T. I. [1 ]
Panov, K. N. [1 ]
机构
[1] Russian Fed Nucl Ctr, Inst Expt Phys VNIIEF, Inst Gas Dynam & Explos Phys, Inst Theoret & Math Phys, Sarov 607190, Russia
关键词
explosive composition; shock wave; detonation; X-ray diffraction; initiation; kinetics; numerical simulation; INITIATION; EXPLOSIVES; DIAMETER; DENSITY; STATE;
D O I
10.1134/S0010508224020102
中图分类号
O414.1 [热力学];
学科分类号
摘要
A detonation propagation process in a charge made of a plastic-bonded triamino-trinitrobenzene-based explosive composition in the form of a hollow cylinder with a steel shell inside is studied in the case where normal detonation is initiated along a line on the outer surface of the charge. The shape of a detonation wave front at certain times is determined using the X-ray method. Electric contact sensors are applied to measure the detonation wave front propagation velocity along the outer surface of the charge. The original arrangement of the experiments makes it possible to study detonation propagation at angles greater than 180 degrees from the initiation line. It is shown that the front velocity of the diverging detonation wave in the initiation plane is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}7.3 km/s. In the shadow region of the initiation point, the front velocity of the diverging detonation wave decreases as a function of a distance traveled both along the outer and inner surface of the charge (up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}6 km/s and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx$$\end{document}5.6 km/s, respectively). At the same time, there is a zone of unreacted triamino-trinitrobenzene near the steel shell in the region where the rotation angles of the detonation wave front range from approximately 150 to 210 degrees. This may indicate detonation failure and transformation into a shock wave. The process is numerically simulated using the SURF detonation kinetics model implemented in MIMOSA. The calculation results are in good agreement with experimental data both at the early stage of the detonation initiation process and in the shadow region of the initiation point, where the detonation wave front velocity drops.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 50 条
  • [1] Influence of initial density on detonation propagation in a TATB-based high explosive
    Anderson, Eric K.
    Short, Mark
    Voelkel, Stephen J.
    Montoya, Gabriel A.
    Chicas, Ritchie I.
    Chiquete, Carlos
    COMBUSTION AND FLAME, 2025, 273
  • [2] Investigation of isentrope for detonation products of TATB-based composition
    Aminov, YA
    Gorshkov, MM
    Zaikin, VT
    Kovalenko, GV
    Nikitenko, YR
    Rykovanov, GN
    SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 875 - 877
  • [3] Deceleration of Detonation Products of a TATB-Based High Explosive
    Yu. A. Aminov
    M. M. Gorshkov
    V. T. Zaikin
    G. V. Kovalenko
    Yu. R. Nikitenko
    G. N. Rykovanov
    Combustion, Explosion and Shock Waves, 2002, 38 : 235 - 238
  • [4] Deceleration of detonation products of a TATB-based high explosive
    Aminov, YA
    Gorshkov, MM
    Zaikin, VT
    Kovalenko, GV
    Nikitenko, YR
    Rykovanov, GN
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2002, 38 (02) : 235 - 238
  • [5] Detonation Initiation and Propagation in a Cylindrical TATB Charge
    Volodina, N. A.
    Erastov, A. V.
    Zabusov, P. V.
    Kiryukhina, M. N.
    Panov, K. N.
    Titova, V. B.
    Shirshova, M. O.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2024, 60 (05) : 651 - 658
  • [6] Modified detonation macrokinetics model of a tatb-based explosive
    Yu. A. Aminov
    A. V. Vershinin
    N. S. Es’kov
    O. V. Kostitsyn
    G. N. Rykovanov
    V. A. Sibilev
    M. A. Strizhenok
    Combustion, Explosion and Shock Waves, 1997, 33 : 77 - 80
  • [7] Modified detonation macrokinetics model of a TATB-based explosive
    Aminov, YA
    Vershinin, AV
    Eskov, NS
    Kostitsyn, OV
    Rykovanov, GN
    Sibilev, VA
    Strizhenok, MA
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1997, 33 (01) : 77 - 80
  • [8] Flash Radiographic Study of Detonation Propagation in Semi-Ring Charges of TATB
    A. V. Erastov
    K. N. Panov
    Combustion, Explosion, and Shock Waves, 2019, 55 : 613 - 619
  • [9] Flash Radiographic Study of Detonation Propagation in Semi-Ring Charges of TATB
    Erastov, A., V
    Panov, K. N.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2019, 55 (05) : 613 - 619
  • [10] Electrical conductivity distribution during detonation of a TATB-based explosive
    N. P. Satonkina
    I. A. Rubtsov
    Technical Physics, 2016, 61 : 142 - 145