Integrating domain knowledge into transformer for short-term wind power forecasting

被引:2
|
作者
Cheng, Junhao [1 ]
Luo, Xing [2 ]
Jin, Zhi [1 ,3 ]
机构
[1] Shenzhen Campus Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 518107, Guangdong, Peoples R China
[2] Peng Cheng Lab, Dept Frontier Res, Shenzhen 518055, Peoples R China
[3] Guangdong Prov Key Lab Fire Sci & Technol, Guangzhou 510006, Peoples R China
关键词
Wind power forecasting; Deep learning; Domain knowledge; Domain-knowledge integrated transformer; model; MODE DECOMPOSITION; PREDICTION;
D O I
10.1016/j.energy.2024.133511
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind energy is an environmentally friendly source of energy and serves as an efficient supplement to conventional energy resources. Accurate wind power forecasting is crucial for effective decision-making in the daily operation of wind power plants. However, due to the heavy dependence on weather conditions, the variability and uncertainty associated with weather pose significant challenges to wind power forecasting. In this study, we propose a domain-knowledge integrated Transformer (DKFormer) model for short-term wind power forecasting. The proposed model integrates domain knowledge of wind power generation through three portable modules that play essential roles in data pre-processing, model training, and forecasting stages respectively. Additionally, by constructing boundary constraints that simultaneously utilize the data of both measured wind power and numerical weather prediction (NWP), the DKFormer model further reduces errors in multi-step wind power forecasting and improves overall forecast performance, particularly when input wind speed data exhibits dramatic variations. Furthermore, transfer learning techniques are employed to enhance the forecast capability of the DKFormer model using limited training data. Real-life datasets are used to evaluate the performance of the proposed DKFormer, demonstrating its superiority over conventional statistical models and DL models in short-term wind forecasting. Specifically, in day-ahead wind power forecasting experiments, our proposed DKFormer model achieves a 22.0% reduction in mean absolute error (MAE) while also exhibiting improved forecast stability compared to the conventional Transformer model.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Adaptive temporal transformer method for short-term wind power forecasting considering shift in time series distribution
    Li, Dan
    Hu, Yue
    Miao, Shuwei
    Fang, Zeren
    Liang, Yunyan
    He, Shuai
    AIP ADVANCES, 2024, 14 (02)
  • [32] Short-Term Wind Power Forecasting Based on SVM with Backstepping Wind Speed of Power Curve
    Yang, Xiyun
    Wei, Peng
    Liu, Huan
    Sun, Baojun
    INDUSTRIAL DESIGN AND MECHANICAL POWER, 2012, 224 : 401 - +
  • [33] Short-term Wind Power Probabilistic Forecasting Considering Spatial Correlation
    Wang, Junxiong
    Han, Xueshan
    Jiang, Jiayin
    Li, Wenbo
    Ma, Yanfei
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017, : 356 - 361
  • [34] Hybrid intelligent approach for short-term wind power forecasting in Portugal
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    IET RENEWABLE POWER GENERATION, 2011, 5 (03) : 251 - 257
  • [35] Short-Term Wind Power Forecasting Using Nonnegative Sparse Coding
    Zhang, Yu
    Kim, Seung-Jun
    Giannakis, Georgios B.
    2015 49th Annual Conference on Information Sciences and Systems (CISS), 2015,
  • [36] Deep neural network for short-term offshore wind power forecasting
    Zheng, Xinpeng
    Qi, Xiaoxia
    Liu, Hongda
    Liu, Xiayu
    Li, Yanan
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [37] Short-Term Forecasting of Inertial Response from a Wind Power Plant
    Muljadi, E.
    Gevorgian, V.
    Hoke, A.
    2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016,
  • [38] Short-term wind power forecasting using ridgelet neural network
    Amjady, Nima
    Keynia, Farshid
    Zareipour, Hamidreza
    ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (12) : 2099 - 2107
  • [39] Short-term wind power forecasting based on dynamic system of equations
    Bramati, Maria Caterina
    Arezzo, Maria Felice
    Pellegrini, Guido
    INTERNATIONAL JOURNAL OF ENERGY AND STATISTICS, 2016, 4 (03)
  • [40] Adaptabilities of three mainstream short-term wind power forecasting methods
    Yan, Jie
    Gao, Xiaoli
    Liu, Yongqian
    Han, Shuang
    Li, Li
    Ma, Xiaomei
    Gu, Chenghong
    Bhakar, Rohit
    Li, Furong
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (05)