Integrating domain knowledge into transformer for short-term wind power forecasting

被引:2
|
作者
Cheng, Junhao [1 ]
Luo, Xing [2 ]
Jin, Zhi [1 ,3 ]
机构
[1] Shenzhen Campus Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 518107, Guangdong, Peoples R China
[2] Peng Cheng Lab, Dept Frontier Res, Shenzhen 518055, Peoples R China
[3] Guangdong Prov Key Lab Fire Sci & Technol, Guangzhou 510006, Peoples R China
关键词
Wind power forecasting; Deep learning; Domain knowledge; Domain-knowledge integrated transformer; model; MODE DECOMPOSITION; PREDICTION;
D O I
10.1016/j.energy.2024.133511
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind energy is an environmentally friendly source of energy and serves as an efficient supplement to conventional energy resources. Accurate wind power forecasting is crucial for effective decision-making in the daily operation of wind power plants. However, due to the heavy dependence on weather conditions, the variability and uncertainty associated with weather pose significant challenges to wind power forecasting. In this study, we propose a domain-knowledge integrated Transformer (DKFormer) model for short-term wind power forecasting. The proposed model integrates domain knowledge of wind power generation through three portable modules that play essential roles in data pre-processing, model training, and forecasting stages respectively. Additionally, by constructing boundary constraints that simultaneously utilize the data of both measured wind power and numerical weather prediction (NWP), the DKFormer model further reduces errors in multi-step wind power forecasting and improves overall forecast performance, particularly when input wind speed data exhibits dramatic variations. Furthermore, transfer learning techniques are employed to enhance the forecast capability of the DKFormer model using limited training data. Real-life datasets are used to evaluate the performance of the proposed DKFormer, demonstrating its superiority over conventional statistical models and DL models in short-term wind forecasting. Specifically, in day-ahead wind power forecasting experiments, our proposed DKFormer model achieves a 22.0% reduction in mean absolute error (MAE) while also exhibiting improved forecast stability compared to the conventional Transformer model.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A valorization of the short-term forecasting of wind power
    Cornalino, E.
    Gutierrez, A.
    Cases, G.
    Draper, M.
    Chaer, R.
    2012 SIXTH IEEE/PES TRANSMISSION AND DISTRIBUTION: LATIN AMERICA CONFERENCE AND EXPOSITION (T&D-LA), 2012,
  • [2] Wind Power Short-Term Forecasting System
    Dica, C.
    Dica, Camelia-Ioana
    Vasiliu, Daniela
    Comanescu, Gh
    Ungureanu, Monica
    2009 IEEE BUCHAREST POWERTECH, VOLS 1-5, 2009, : 508 - +
  • [3] Multistep short-term wind speed forecasting using transformer
    Wu, Huijuan
    Meng, Keqilao
    Fan, Daoerji
    Zhang, Zhanqiang
    Liu, Qing
    ENERGY, 2022, 261
  • [4] Short-term wind power forecasting based on HHT
    Liao, Xiaohui
    Yang, Dongqiang
    Xi, Hongguang
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON CIVIL, TRANSPORTATION AND ENVIRONMENT, 2016, 78 : 901 - 905
  • [5] Development of Short-Term Wind Power Forecasting Methods
    Cao, Bo
    Chang, Liuchen
    2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2022,
  • [6] Short-Term Forecasting and Uncertainty Analysis of Wind Power
    Bo, Gu
    Keke, Luo
    Hongtao, Zhang
    Jinhua, Zhang
    Hui, Huang
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (05):
  • [7] Very short-term wind power forecasting considering static data: An improved transformer model
    Wang, Sen
    Sun, Yonghui
    Zhang, Wenjie
    Chung, C. Y.
    Srinivasan, Dipti
    ENERGY, 2024, 312
  • [8] Short-term forecasting for multiple wind farms based on transformer model
    Qu, Kai
    Si, Gangquan
    Shan, Zihan
    Kong, XiangGuang
    Yang, Xin
    ENERGY REPORTS, 2022, 8 : 483 - 490
  • [9] Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series
    Liu, Lei
    Wang, Xinyu
    Dong, Xue
    Chen, Kang
    Chen, Qiuju
    Li, Bin
    APPLIED ENERGY, 2024, 374
  • [10] A novel EMD and causal convolutional network integrated with Transformer for ultra short-term wind power forecasting
    Li, Ning
    Dong, Jie
    Liu, Lingyue
    Li, He
    Yan, Jie
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 154