UAV-Based Multispectral Imagery for Estimating Cassava Tuber Yields

被引:0
|
作者
Rattanasopa K. [1 ]
Saengprachatanarug K. [1 ,2 ]
Wongpichet S. [2 ]
Posom J. [1 ,2 ]
Saikaew K. [1 ]
Ungsathittavorn K. [3 ]
Pilawut S. [4 ]
Chinapas A. [1 ]
Taira E. [5 ]
机构
[1] Faculty of Engineering, Khon Kaen University
[2] Applied Engineering for Important Crops of the North East Research Group, Khon Kaen University
[3] Faculty of Engineering, Rajamangala University of Technology, ISAN Khonkaen Campus
[4] Faculty of Agriculture, University of the Ryukyus
关键词
cassava; multispectral; UAV; yield;
D O I
10.37221/EAEF.15.1_1
中图分类号
学科分类号
摘要
This experiment studies the feasibility of tuber yield prediction in cassava fields using multispectral imagery based on unmanned arial vehicle (UAV). The imageries of a cassava field were taken monthly, four times. The cassava's height, normalized difference vegetation index (NDVI), simple ratio vegetation index (RVI), and chlorophyll vegetation index (CIRedEdge) were calculated. Yield models were developed using Simple linear regression with vegetation indices (VIs), canopy area, and average height from 3 methods: excluded soil pixels (1), zero soil pixels (2), and included soil pixels (3). The results show the average height and canopy area from method (1) provides the highest R2 0.87 and 0.65. VIs values from method (3) gives R2 0.58, 0.57, and 0.50 for NDVI, CIRedEdge, and RVI. © 2022 Elsevier B.V.. All rights reserved.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [21] Corn Grain Yield Prediction Using UAV-based High Spatiotemporal Resolution Multispectral Imagery
    Killeen, Patrick
    Kiringa, Iluju
    Yeap, Tet
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1054 - 1062
  • [22] Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery
    Tanabe, Ryoya
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    FIELD CROPS RESEARCH, 2023, 291
  • [23] ESTIMATING CHLOROPHYLL CONTENT OF RICE BASED ON UAV-BASED HYPERSPECTRAL IMAGERY AND CONTINUOUS WAVELET TRANSFORM
    An, Gangqiang
    Xing, Minfeng
    Liao, Chunhua
    He, Binbin
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5270 - 5273
  • [24] Estimating yield-contributing physiological parameters of cotton using UAV-based imagery
    Pokhrel, Amrit
    Virk, Simerjeet
    Snider, John L.
    Vellidis, George
    Hand, Lavesta C.
    Sintim, Henry Y.
    Parkash, Ved
    Chalise, Devendra P.
    Lee, Joshua M.
    Byers, Coleman
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [25] Estimating water quality parameters of freshwater aquaculture ponds using UAV-based multispectral images
    Chen, Guangxin
    Wang, Yancang
    Gu, Xiaohe
    Chen, Tianen
    Liu, Xingyu
    Lv, Wenxu
    Zhang, Baoyuan
    Tang, Ruiyin
    He, Yuejun
    Li, Guohong
    AGRICULTURAL WATER MANAGEMENT, 2024, 304
  • [26] UAV-Based Multispectral Inversion of Integrated Cotton Growth
    Gu, Haozheng
    Xue, Chen
    Wang, Guobin
    Lan, Yubin
    Wang, Huizheng
    Song, Cancan
    AGRONOMY-BASEL, 2024, 14 (12):
  • [27] Optimizing the Processing of UAV-Based Thermal Imagery
    Maes, Wouter H.
    Huete, Alfredo R.
    Steppe, Kathy
    REMOTE SENSING, 2017, 9 (05):
  • [28] UAV-BASED RIVER PLASTIC DETECTION WITH A MULTISPECTRAL CAMERA
    Cortesi, I
    Masiero, A.
    Tucci, G.
    Topouzelis, K.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 855 - 861
  • [29] Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery
    Wang, Hongquan
    Singh, Keshav D.
    Poudel, Hari P.
    Natarajan, Manoj
    Ravichandran, Prabahar
    Eisenreich, Brandon
    SENSORS, 2024, 24 (17)
  • [30] Assessment of cotton and sorghum stand establishment using UAV-based multispectral and DSLR-based RGB imagery
    Dhakal, Madhav
    Huang, Yanbo
    Locke, Martin A.
    Reddy, Krishna N.
    Moore, Matthew T.
    Krutz, L. Jason
    Gholson, Drew
    Bajgain, Rajen
    AGROSYSTEMS GEOSCIENCES & ENVIRONMENT, 2022, 5 (02)