Influencing Factors and Adsorption Process of N2/CH4/CO2 Competitive Adsorption in Coal

被引:2
|
作者
Pan, Hongyu [1 ]
Han, Mingrui [1 ]
Zhang, Tianjun [1 ]
Ji, Bingnan [1 ]
Pan, Mingyue [1 ]
Li, Zefan [1 ]
Zhu, Shipeng [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Safety Sci & Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR SIMULATION; CH4; RECOVERY; CO2; METHANE; N-2; INJECTION; DISPLACEMENT; PURE;
D O I
10.1021/acs.energyfuels.4c04363
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To investigate the influence of key factors (temperature, pressure, and particle size) on the competitive adsorption of N-2/CH4/CO2 on coal, a self-built multicomponent gas adsorption apparatus was used based on the breakthrough curve method to conduct competitive adsorption experiments under different conditions. The adsorption process was dynamically analyzed by combining adsorption kinetics models with the pore structure characteristics of the samples. The results showed that increasing the temperature promotes competitive adsorption and enhances the preferential adsorption of CO2, while increasing the pressure and particle size mesh number inhibits competitive adsorption and weakens the preferential adsorption of CO2. The experimental data fitted well with the Yoon-Nelson, Thomas, and Clark kinetic models, with R-2 values all above 0.9. The mass transfer rate constants followed the order k(N-2) > k(CH4) > k(CO2). As temperature and pressure increased or particle size mesh number increased, the k values for each component increased, enhancing the gas mass transfer rate. The adsorption capacities (q(T)) and Clark constants (A) for each component showed the order CO2 > CH4 > N-2, indicating that the coal samples had the highest adsorption capacity and strength for CO2, followed by CH4 and then N-2. Lowering the temperature, increasing the pressure, or increasing the particle size mesh number all led to increases in q(T) and A for each component. The samples exhibited good pore connectivity, with the most developed micropores having a diameter of 2.05 nm, and relatively large specific surface area and pore volume. During competitive adsorption, N-2 was initially adsorbed and then displaced by CH4 and CO2, with CH4 subsequently displaced by CO2. These conclusions provide some guidance for the study of competitive adsorption of multicomponent gases in coal, further improving the related theory of coal competitive adsorption.
引用
收藏
页码:22182 / 22191
页数:10
相关论文
共 50 条
  • [31] Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in Novel Activated Carbon Beads: Preparation, Measurements and Simulation
    Shao, Xiaohong
    Feng, Zhenhe
    Xue, Ruisheng
    Ma, Congcong
    Wang, Wenchuan
    Peng, Xuan
    Cao, Dapeng
    AICHE JOURNAL, 2011, 57 (11) : 3042 - 3051
  • [32] Competitive adsorption/desorption of CH4/CO2/N2 mixture on anthracite from China for ECBM operation
    Zhang, Yi
    Chi, Yuan
    Xing, Wanli
    Liu, Shuyang
    Song, Yongchen
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [33] Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite
    Mulgundmath, V. P.
    Tezel, F. H.
    Saatcioglu, T.
    Golden, T. C.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 90 (03): : 730 - 738
  • [34] Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics
    Long, Hang
    Lin, Hai-fei
    Yan, Min
    Bai, Yang
    Tong, Xiao
    Kong, Xiang-guo
    Li, Shu-gang
    FUEL, 2021, 292
  • [35] Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process
    Jiang, Qiying
    Rentschler, Jeffrey
    Sethia, Govind
    Weinman, Steven
    Perrone, Roger
    Liu, Kunlei
    CHEMICAL ENGINEERING JOURNAL, 2013, 230 : 380 - 388
  • [36] Competitive adsorption characteristics of N2 and CH4 gas mixtures on coal and its geological significance
    Xu, Shuang
    Wang, Wei
    Chen, Xin
    Li, Yangbing
    Fei, Jingliang
    Ma, Litao
    Du, Linxuan
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, PTS 1-5, 2020, 546
  • [37] Molecular simulation of CO2/CH4 competitive adsorption in kerogen
    Sui H.
    Yao J.
    1600, University of Petroleum, China (40): : 147 - 154
  • [38] Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework
    Mishra, Prashant
    Mekala, Samuel
    Dreisbach, Freider
    Mandal, Bishnupada
    Gumma, Sasidhar
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 94 : 124 - 130
  • [39] Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks
    Mishra, Prashant
    Edubilli, Satyannarayana
    Mandal, Bishnupada
    Gumma, Sasidhar
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 169 : 75 - 80
  • [40] Adsorption of CO2, CH4, N2 and He on MFI, CHA and DDR zeolites
    Kyriazidou, Iliana
    Nobandegani, Mojtaba Sinaei
    Hedlund, Jonas
    Yu, Liang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2025, 390