Harvesting multidirectional wind energy based on flow-induced vibration triboelectric nanogenerator with directional tuning mechanism

被引:1
|
作者
Zhang, Sheng [1 ]
Shi, Zhaojuan [1 ]
Da, Yinxi [1 ]
Cui, Yuting [3 ]
Yu, Peng [3 ]
Xue, Changguo [1 ]
Zhu, Yabo [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Mat Sci & Engn, Huainan 232001, Anhui, Peoples R China
[2] China Univ Min & Technol, Sch Mat & Phys, Xuzhou 221116, Jiangsu, Peoples R China
[3] Chongqing Normal Univ, Chongqing Key Lab Photo Elect Funct Mat & Laser Te, Chongqing 401331, Peoples R China
关键词
Triboelectric nanogenerator; Directional tuning mechanism; Flow-induced vibration; Multidirectional wind energy; GENERATOR;
D O I
10.1016/j.sna.2024.115974
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wind-induced vibration (WIV), as low-velocity wind energy utilization technology in agricultural environment, has significant advantages. Nevertheless, there is a mismatch between the variability of wind direction and the work mode of triboelectric nanogenerator (TENG), which leads to a sharp decline in the performance of triboelectric power generation. This work proposes a TENG based on multidirectional WIV (TENG-WIV), which mainly contains triboelectric power generation unit, guide-wing and triboelectric direction sensor. By introducing the directional tuning mechanism based on guide-wing, the TENG-WIV aims to break the constraints of single wind direction response and effectively respond to the wind direction within 360 degrees degrees range, thereby realizing multidirectional wind energy harvesting and sensor power supply. The empirical findings indicate that the output voltage and current of triboelectric power generation unit are in the ranges of 62-241 V and 0.25-1.21 mu A, respectively, at the wind velocities of 1.23-5.13 m/s. At a wind velocity of 3.18 m/s, the unit achieves an out-power peak of 0.09 mW. Furthermore, the triboelectric direction sensor can respond to changes in 8 directions and has wind direction monitoring potentiality. The directional tuning mechanism endows flow- induced vibration energy harvesters with an all-around multidirectional sensitivity.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Piezoelectric energy harvesting from flow-induced vibration
    Wang, D-A
    Ko, H-H
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (02)
  • [22] Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting
    Feng, Yange
    Zhang, Liqiang
    Zheng, Youbin
    Wang, Daoai
    Zhou, Feng
    Liu, Weimin
    NANO ENERGY, 2019, 55 : 260 - 268
  • [23] Study of wind energy harvesting based on rolling bearing type triboelectric nanogenerator
    Yan, Jin
    Tang, Zhi
    Zhang, Cheng
    Long, Yanghui
    Li, Jiangfeng
    Sheng, Yuxuan
    ENERGY REPORTS, 2024, 12 : 3690 - 3699
  • [24] Nutshell Powder-Based Green Triboelectric Nanogenerator for Wind Energy Harvesting
    Zhang, Ruijuan
    Xia, Ruihuan
    Cao, Xia
    Wang, Ning
    ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
  • [25] Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy
    Quan, Ting
    Wu, Yingchun
    Yang, Ya
    NANO RESEARCH, 2015, 8 (10) : 3272 - 3280
  • [26] Design and output performance of vibration energy harvesting triboelectric nanogenerator
    Wu Ye-Sheng
    Liu Qi
    Cao Jie
    Li Kai
    Cheng Guang-Gui
    Zhang Zhong-Qiang
    Ding Jian-Ning
    Jiang Shi-Yu
    ACTA PHYSICA SINICA, 2019, 68 (19)
  • [27] Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow
    Li, Xiaowei
    Zhou, Yuan
    Li, Zhongjie
    Guo, Hengyu
    Gong, Ying
    Zhang, Dan
    Zhang, Di
    Zhang, Qin
    Wang, Biao
    Peng, Yan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [28] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 82
  • [29] Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
    Seol, Myeong-Lok
    Woo, Jong-Ho
    Jeon, Seung-Bae
    Kim, Daewon
    Park, Sang-Jae
    Hur, Jae
    Choi, Yang-Kyu
    NANO ENERGY, 2015, 14 : 201 - 208
  • [30] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    Nano Energy, 2021, 82