Heterogeneous Domain Decomposition Methods for Eddy Current Problems

被引:0
|
作者
机构
[1] Rodríguez, Ana Alonso
来源
Rodríguez, A. A. (alonso@science.unitn.it) | 1600年 / Springer Verlag卷 / 91期
关键词
Electric fields - Numerical methods - Iterative methods;
D O I
10.1007/978-3-642-35275-1_9
中图分类号
学科分类号
摘要
The usual setting of an eddy current problem distinguishes between a conducting region and an air region (non-conducting) surrounding the conductor. For the numerical approximation of this heterogeneous problem it is very natural to use iterative substructuring methods based on transmission conditions at the interface. We analyze the convergence of the Dirichlet-Neumann iterative method for two different formulations of the eddy current problem: the one that consider as main unknown the electric field and the one based on the magnetic field. © Springer-Verlag Berlin Heidelberg 2013.
引用
收藏
相关论文
共 50 条
  • [31] Fuzzy Domain Decomposition: A New Perspective on Heterogeneous DD Methods
    Gander, Martin J.
    Michaud, Jerome
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 265 - 273
  • [32] On domain decomposition algorithms for covolume methods for elliptic problems
    Zhang, Sheng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 24 - 32
  • [33] Domain decomposition methods for advection-dominated problems
    Lube, G
    Auge, A
    Otto, FC
    Kapurkin, A
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 1059 - 1065
  • [34] OVERLAPPING DOMAIN DECOMPOSITION METHODS FOR LINEAR INVERSE PROBLEMS
    Jiang, Daijun
    Feng, Hui
    Zou, Jun
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (01) : 163 - 188
  • [35] DOMAIN DECOMPOSITION LEARNING METHODS FOR SOLVING ELLIPTIC PROBLEMS
    Sun, Qi
    Xu, Xuejun
    Yi, Haotian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : A2445 - A2474
  • [36] Domain decomposition methods for PDE constrained optimization problems
    Prudencio, E
    Byrd, R
    Cai, XC
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2004, 2005, 3402 : 569 - 582
  • [37] SOLUTION OF THE 2-D EDDY-CURRENT PROBLEM VIA THE DOMAIN DECOMPOSITION METHODS ON SERIAL AND PARALLEL COMPUTERS
    LAVERS, JD
    BOGLAEV, IP
    SIROTKIN, VV
    MATHEMATICAL AND COMPUTER MODELLING, 1995, 21 (05) : 31 - 48
  • [38] A finite difference time domain scheme for transient eddy current problems
    Yioultsis, TV
    Charitou, KS
    Antonopoulos, CS
    Tsiboukis, TD
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3145 - 3149
  • [39] Adaptive finite element frequency domain method for eddy current problems
    Zheng, Weiying
    Zhang, Feiran
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1233 - 1241
  • [40] An efficient time domain method for nonlinear periodic eddy current problems
    Bíró, O
    Preis, K
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 695 - 698