Novel intuitionistic fuzzy c-means clustering for linearly and nonlinearly separable data

被引:0
|
作者
Kaur, Prabhjot [1 ]
Soni, A.K. [2 ]
Gosain, Anjana [3 ]
机构
[1] Department of IT, MSIT, GGSIP University, New Delhi, India
[2] Department of Computers, Sharda University, Greater Noida, India
[3] University School of IT, GGSIP University, New Delhi, India
来源
WSEAS Transactions on Computers | 2012年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a robust Intuitionistic Fuzzy c-means (IFCM-σ) in the data space and a robust kernel Intutitionistic Fuzzy C-means (KIFCM-σ) algorithm in the high-dimensional feature space with a new distance metric to improve the performance of Intuitionistic Fuzzy C-means (IFCM) which is based upon intuitionistic fuzzy set theory. IFCM considered an uncertainty parameter called hesitation degree and incorporated a new objective function which is based upon intutionistic fuzzy entropy in the conventional Fuzzy C-means. It has shown better performance than conventional Fuzzy C-Means. We tried to further improve the performance of IFCM by incorporating a new distance measure which has also considered the distance variation within a cluster to regularize the distance between a data point and the cluster centroid. Experiments are done using two-dimensional synthetic data-sets, Standard data-sets referred from previous papers. Results have shown that proposed algorithms, especially KIFCM-σ is more effective for linear and nonlinear separation.
引用
收藏
页码:65 / 76
相关论文
共 50 条
  • [41] Fuzzy c-means for fuzzy hierarchical clustering
    Vicenc, T
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 646 - 651
  • [42] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    INFORMATION SCIENCES, 2025, 690
  • [43] A novel validity indice for fuzzy C-means clustering algorithm
    Li, Jing
    Qian, Xuezhong
    Journal of Computational Information Systems, 2013, 9 (23): : 9679 - 9688
  • [44] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [45] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [46] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [47] Generalized fuzzy c-means clustering in the presence of outlying data
    Hathaway, RJ
    Overstreet, DD
    Hu, YK
    Davenport, JW
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE II, 1999, 3722 : 509 - 517
  • [48] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [49] Application of Fuzzy c-Means Clustering in Data Analysis of Metabolomics
    Li, Xiang
    Lu, Xin
    Tian, Jing
    Gao, Peng
    Kong, Hongwei
    Xu, Guowang
    ANALYTICAL CHEMISTRY, 2009, 81 (11) : 4468 - 4475
  • [50] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573