Novel intuitionistic fuzzy c-means clustering for linearly and nonlinearly separable data

被引:0
|
作者
Kaur, Prabhjot [1 ]
Soni, A.K. [2 ]
Gosain, Anjana [3 ]
机构
[1] Department of IT, MSIT, GGSIP University, New Delhi, India
[2] Department of Computers, Sharda University, Greater Noida, India
[3] University School of IT, GGSIP University, New Delhi, India
来源
WSEAS Transactions on Computers | 2012年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a robust Intuitionistic Fuzzy c-means (IFCM-σ) in the data space and a robust kernel Intutitionistic Fuzzy C-means (KIFCM-σ) algorithm in the high-dimensional feature space with a new distance metric to improve the performance of Intuitionistic Fuzzy C-means (IFCM) which is based upon intuitionistic fuzzy set theory. IFCM considered an uncertainty parameter called hesitation degree and incorporated a new objective function which is based upon intutionistic fuzzy entropy in the conventional Fuzzy C-means. It has shown better performance than conventional Fuzzy C-Means. We tried to further improve the performance of IFCM by incorporating a new distance measure which has also considered the distance variation within a cluster to regularize the distance between a data point and the cluster centroid. Experiments are done using two-dimensional synthetic data-sets, Standard data-sets referred from previous papers. Results have shown that proposed algorithms, especially KIFCM-σ is more effective for linear and nonlinear separation.
引用
收藏
页码:65 / 76
相关论文
共 50 条
  • [1] Fuzzy C-means based clustering for linearly and nonlinearly separable data
    Tsai, Du-Ming
    Lin, Chung-Chan
    PATTERN RECOGNITION, 2011, 44 (08) : 1750 - 1760
  • [2] Intuitionistic fuzzy C-means clustering algorithms
    Zeshui Xu1
    2.Institute of Sciences
    3.Department of Information Systems
    JournalofSystemsEngineeringandElectronics, 2010, 21 (04) : 580 - 590
  • [3] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [4] Generalized Ordered Intuitionistic Fuzzy C-Means Clustering Algorithm Based on PROMETHEE and Intuitionistic Fuzzy C-Means
    Bashir, Muhammad Adnan
    Rashid, Tabasam
    Bashir, Muhammad Salman
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [5] A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm
    Lin, Kuo-Ping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1074 - 1087
  • [6] Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms
    Kaushal, Meenakshi
    Lohani, Q. M. Danish
    Castillo, Oscar
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (03) : 943 - 977
  • [7] Weighted Intuitionistic Fuzzy C-Means Clustering Algorithms
    Meenakshi Kaushal
    Q. M. Danish Lohani
    Oscar Castillo
    International Journal of Fuzzy Systems, 2024, 26 : 943 - 977
  • [8] A New Intuitionistic Fuzzy c-means Clustering Algorithm
    Jiang, Hui
    Zhou, Xiaoguang
    Feng, Baisheng
    Zhang, Mingdong
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1116 - 1119
  • [9] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [10] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515