Fast preparation of adhesive, anti-freezing hydrogels with strain- and magnetic-responsive conductivities

被引:0
|
作者
He, Xinyu [1 ,2 ]
Huang, Xinyi [1 ,2 ]
He, Shuai [1 ,2 ]
Zhang, Wei [1 ,2 ]
Li, Xinhua [1 ,2 ]
You, Yong [1 ,2 ]
Zuo, Fang [1 ,2 ]
机构
[1] Southwest Minzu Univ, Coll Chem & Environm, Chengdu 610041, Peoples R China
[2] Southwest Minzu Univ, Key Lab Pollut Control Chem & Environm Funct Mat Q, Natl Ethn Affairs Commiss, Chengdu 610041, Peoples R China
来源
MATERIALS ADVANCES | 2024年 / 5卷 / 21期
基金
中国国家自然科学基金;
关键词
TOUGH;
D O I
10.1039/d4ma00642a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Incorporation of magnetic components enables flexible conductive hydrogels to exhibit strain-response properties in the presence of a magnetic field. However, the utilization of flexible conductive hydrogels is constrained under low-temperature conditions, and the mechanical properties of most magnetic hydrogels are poor. In this work, a conductive sensor was developed through Ca2+-initiated radical polymerization, utilizing the synergistic effects of sodium lignosulfonate (SL), calcium chloride (CaCl2), and Fe3O4@laponites (XLG). Fe3O4@XLG not only served as a physical crosslinking agent but also functioned as a magnetic component. Due to the presence of both physical and chemical crosslinking, the Ca2+-Fe3O4@XLG/SL/polyacrylamide (PAM) hydrogel had good mechanical properties. After being placed at -20 degrees C for 24 h, the Ca2+-Fe3O4@XLG/SL/PAM hydrogel remained intact, soft, and tough, and it still exhibited good stretchability (1029%) and strength (69.7 kPa). In addition, the hydrogel also exhibited good adhesion with various substrates. Strain sensors assembled from the nanocomposite hydrogels achieved a gauge factor of 5.14, a response time of 166 ms, and good stability. The Ca2+-Fe3O4@XLG/SL/PAM hydrogels had magnetic response properties, and they could respond quickly to magnetic field changes in the form of resistance changes. Thus, they have potential applications in magnetic field signal monitoring and soft actuators. Fe3O4@XLG functioned as both a physical crosslinking and a magnetic component, and the conductivity of the Ca2+-Fe3O4@XLG/SL/PAM hydrogels exhibited both strain and magnetic responsiveness.
引用
收藏
页码:8629 / 8637
页数:9
相关论文
共 50 条
  • [21] Dual-Stimuli-Responsive and Anti-Freezing Conductive Ionic Hydrogels for Smart Wearable Devices and Optical Display Devices
    Lei, Dongmei
    Xiao, Yunchao
    Shao, Leihou
    Xi, Man
    Jiang, Yang
    Li, Yi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (20) : 24175 - 24185
  • [22] Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors
    Chen, Lizhi
    Yin, Hongyan
    Liu, Fangfei
    Abdiryim, Tursun
    Xu, Feng
    You, Jiangan
    Chen, Jiaying
    Jing, Xinyu
    Li, Yancai
    Su, Mengyao
    Liu, Xiong
    CELLULOSE, 2024, 31 (18) : 11015 - 11033
  • [23] Advanced wearable strain sensors: Ionic double network hydrogels with exceptional stretchability, adhesion, anti-freezing properties, and sensitivity
    Zhou, Shuang
    Zhang, Zheng
    Zheng, Dan
    Ma, Xinyuan
    Yang, Peiyi
    Chen, Yewang
    Xu, Fang
    Meng, Aiyun
    Su, Yaorong
    Han, Peigang
    MATERIALS RESEARCH BULLETIN, 2024, 174
  • [24] A biocompatible, highly adhesive zwitterionic polymer hydrogel with high ionic conductivity, anti-freezing and moisturizing for wearable strain sensor
    Lu, Yanfen
    Zhong, Wenbin
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [25] Dual-stimuli-responsive, anti-freezing, and conductive ionic hydrogels for smart wearable and outdoor UV radiation monitoring devices
    Lei, Dongmei
    Xiao, Yunchao
    Han, Yuanyuan
    Yang, Hong Yu
    Xi, Man
    Jiang, Yang
    Li, Yi
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 366
  • [26] Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors
    Zhang, Wei
    Wen, Jing-Yun
    Ma, Ming-Guo
    Li, Ming-Fei
    Peng, Feng
    Bian, Jing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 555 - 566
  • [27] Room Temperature Ca2+-Initiated Free Radical Polymerization for the Preparation of Conductive, Adhesive, Anti-freezing and UV- Blocking Hydrogels for Monitoring Human Movement
    Lv, Hui
    Zong, Shiyu
    Li, Tong
    Zhao, Qian
    Xu, Zhiyong
    Duan, Jiufang
    ACS OMEGA, 2023, 8 (10): : 9434 - 9444
  • [28] Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors
    Xie, Yitong
    Gao, Shishuai
    Jian, Junyu
    Shi, Xiaoyu
    Lai, Chenhuan
    Wang, Chunpeng
    Xu, Feng
    Chu, Fuxiang
    Zhang, Daihui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 227 : 462 - 471
  • [29] Ultra-Stretchable and Self-Healing Anti-Freezing Strain Sensors Based on Hydrophobic Associated Polyacrylic Acid Hydrogels
    Yin, Shuya
    Su, Gehong
    Chen, Jiajun
    Peng, Xiaoyan
    Zhou, Tao
    MATERIALS, 2021, 14 (20)
  • [30] Super anti-freezing, fast-responsive nanocomposite organohydrogels with excellent mechanical properties as multifunctional sensors for human motion monitoring
    Xu, Qiuyu
    Li, Mengmeng
    Zhang, Yuxi
    Gao, Hongguo
    Zhang, Lei
    Zhao, Yanjiao
    Liu, Lifang
    POLYMER, 2023, 283