Identifying degrees of deprivation from space using deep learning and morphological spatial analysis of deprived urban areas

被引:0
|
作者
Abascal, Angela [1 ,2 ]
Rodríguez-Carreño, Ignacio [3 ,4 ]
Vanhuysse, Sabine [5 ]
Georganos, Stefanos [6 ]
Sliuzas, Richard [7 ]
Wolff, Eleonore [5 ]
Kuffer, Monika [7 ]
机构
[1] School of Architecture, University of Navarra, Pamplona, Spain
[2] Navarra Center for International Development, University of Navarra, Pamplona, Spain
[3] Faculty of Economics, University of Navarra, Pamplona, Spain
[4] Data Science and Artificial Intelligence Institute, University of Navarra, Pamplona, Spain
[5] Department of Geosciences, Environment and Society, Université Libre De Bruxelles, Brussels, Belgium
[6] Division of Geoinformatics, KTH Royal Institute of Technology, Stockholm, Sweden
[7] Faculty of Geo-Information Science & Earth Observation, University of Twente, Enschede, Netherlands
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Comparative Analysis of Deep Learning and Statistical Models for Air Pollutants Prediction in Urban Areas
    Naz, Fareena
    Mccann, Conor
    Fahim, Muhammad
    Cao, Tuan-Vu
    Hunter, Ruth
    Viet, Nguyen Trung
    Nguyen, Long D.
    Duong, Trung Q.
    IEEE ACCESS, 2023, 11 : 64016 - 64025
  • [22] Statistical Analysis of Urban Traffic Flow Using Deep Learning
    Liu Q.
    Wu S.
    Zhang P.
    1600, Slovene Society Informatika (48): : 23 - 28
  • [23] Urban Plant Monitoring from Space: Using Deep Learning Architectures to Monitor Urban Vegetation Distributions with Multispectral Satellite Imagery
    Kanda, Benjamin
    Fennell, Joseph T.
    JBIS - Journal of the British Interplanetary Society, 2022, 75 (01): : 25 - 29
  • [24] Bibliometric Analysis on Identifying Plant, Crop Diseases Using Machine Learning and Deep Learning
    Raghavendran, Ch.V.
    Bheema Rao, R.V.V.N.
    Mahaboob Basha, S.K.
    Mani Chigurupati, T.R.
    Advances in Transdisciplinary Engineering, 2023, 32 : 113 - 118
  • [25] Spatial analysis of the bone marrow stroma using deep learning
    Gomariz, Alvaro
    Isringhausen, Stephan
    Helbling, Patrick
    Suessbier, Ute
    Becker, Anton
    Boss, Andreas
    Paul, Gregory
    Goksel, Orcun
    Szekely, Gabor
    Stoma, Szymon
    Norrelykke, Simon F.
    Manz, Markus G.
    Nombela-Arrieta, Cesar
    SWISS MEDICAL WEEKLY, 2018, 148 : 25S - 25S
  • [26] Urban Morphological Change Analysis of Dhaka City, Bangladesh, Using Space Syntax
    Ahmed, Bayes
    Hasan, Rakibul
    Maniruzzaman, K. M.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2014, 3 (04) : 1412 - 1444
  • [27] Data Augmentation for Morphological Analysis of Histopathological Images Using Deep Learning
    Tabakov, Martin
    Karanowski, Konrad
    Chlopowiec, Adam R.
    Chlopowiec, Adrian B.
    Kasperek, Mikolaj
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 13501 : 95 - 105
  • [28] Identifying sex from pharyngeal images using deep learning algorithm
    Yoshihara, Hiroshi
    Fukuda, Memori
    Hanawa, Takaya
    Tsugawa, Yusuke
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Identifying accident prone areas and factors influencing the severity of crashes using machine learning and spatial analyses
    Khosravi, Yegane
    Hosseinali, Farhad
    Adresi, Mostafa
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Identifying Spatial Determinants of Rice Yields in Main Producing Areas of China Using Geospatial Machine Learning
    Wang, Qingyan
    Sun, Longzhi
    Yang, Xuan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (03)