On the upper bound for the number of spanning trees of a connected graph

被引:0
|
作者
Li, Rao [1 ]
机构
[1] Dept. of Mathematical Sciences, University of South Carolina Aiken, Aiken,SC,29801, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Eigenvalues and eigenfunctions
引用
收藏
页码:257 / 269
相关论文
共 50 条
  • [41] PROPERTIES OF THE NUMBER OF SPANNING-TREES AND OF PARTIAL CONNECTED GRAPHS
    ZAMANSKY, LY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (07): : 70 - 75
  • [42] Undirected simple connected graphs with minimum number of spanning trees
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3074 - 3082
  • [43] AN UPPER BOUND OF A GENERALIZED UPPER HAMILTONIAN NUMBER OF A GRAPH
    Dzurik, Martin
    ARCHIVUM MATHEMATICUM, 2021, 57 (05): : 299 - 311
  • [44] THE BOUND OF THE MAXIMUM NUMBER OF END VERTICES OF SPANNING-TREES
    ZHANG, FJ
    CHEN, ZB
    KEXUE TONGBAO, 1988, 33 (14): : 1149 - 1151
  • [45] The number of spanning trees in an (r, s)-semiregular graph and its line graph
    Bibak, Khodakhast
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (08) : 1209 - 1212
  • [46] The number of spanning trees in Kn-complement of a bipartite graph
    Gong, Helin
    Gong, Yu
    Ge, Jun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (02) : 541 - 554
  • [47] The number of spanning trees in a k5 chain graph
    Kosar, Zunaira
    Zaman, Shahid
    Ali, Wajid
    Ullah, Asad
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [48] Spanning trees with minimum number of leaves in the square graph of a tree
    Wu, Qiuxin
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2016, 16 (01) : 21 - 27
  • [49] THE NUMBER OF SPANNING TREES OF THE BIPARTITE COMPLEMENT OF A SEMIREGULAR BIPARTITE GRAPH
    Gong, Helin
    Yao, Jutian
    Zhang, Hailiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 739 - 746
  • [50] The number and degree distribution of spanning trees in the Tower of Hanoi graph
    Zhang, Zhongzhi
    Wu, Shunqi
    Li, Mingyun
    Comellas, Francesc
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 443 - 455