Deep learning-driven Mie scattering prediction method for radially varying spherical particles

被引:0
|
作者
Wang, Guoyan [1 ,2 ,3 ]
Li, Zhongxiang [1 ,2 ,4 ]
Hu, Chun [1 ,2 ,4 ]
Yang, Guanyu [5 ]
Yang, Xiaojun [5 ]
Liu, Bei [6 ]
机构
[1] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Explorat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314000, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[5] Innovat & Res Inst HIWING Technol Acad, Beijing 100074, Peoples R China
[6] Beijing Res Inst Telemetry, Beijing 100076, Peoples R China
来源
关键词
Mie scattering; Deep learning; LSTM; Aerosol particles; Optical scattering prediction; TIME-SERIES PREDICTION; LIGHT-SCATTERING; AEROSOL-PARTICLES; ELECTROMAGNETIC SCATTERING; ABSORPTION; ALGORITHM; WAVES;
D O I
10.1016/j.optlastec.2024.111170
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient and accurate calculation of Mie scattering parameters for aerosol particles holds significant scientific value and practical implications across various fields such as climate change and environmental science. Traditional multilayer Mie scattering computations are challenged in effectively handling particles that exhibit radial refractive index gradients, leading to low computation speed and accuracy. This paper proposes a novel method driven by deep learning, named RIMie, to offer accuracy and efficient Mie parameters prediction, addressing major challenges in computational efficiency and accuracy. This study provides an efficient and accurate deep learning strategy for calculating Mie scattering parameters of complex aerosol particles, markedly outperforming existing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine Learning-Driven Methods for Nanobody Affinity Prediction
    Feng, Hua
    Sun, Xuefeng
    Li, Ning
    Xu, Qian
    Li, Qin
    Zhang, Shenli
    Xing, Guangxu
    Zhang, Gaiping
    Wang, Fangyu
    ACS OMEGA, 2024, 9 (48): : 47893 - 47902
  • [22] Deep Learning-Driven Insights into Cell Migration Dynamics
    Shrestha, Shruti
    Jiang, Yi
    Edirisinghe, Neranjan Suranga
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024, 2024,
  • [23] Deep Learning-Driven Detection and Mapping of Rockfalls on Mars
    Bickel, Valentin Tertius
    Conway, Susan J.
    Tesson, Pierre-Antoine
    Manconi, Andrea
    Loew, Simon
    Mall, Urs
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2831 - 2841
  • [24] Deep learning-driven predictive tools for damage prediction and optimization in composite hydrogen storage tanks
    Nachtane, M.
    Idrissi, M. El Fallaki
    Tarfaoui, M.
    Qarssis, Y.
    Abichou, A.
    Faik, A.
    COMPOSITES COMMUNICATIONS, 2024, 51
  • [25] Size measurement of very small spherical particles by Mie Scattering Imaging (MSI)
    Grassmann, A
    Peters, F
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2004, 21 (05) : 379 - 389
  • [26] Nonlinear Mie scattering from spherical particles -: art. no. 245434
    Pavlyukh, Y
    Hübner, W
    PHYSICAL REVIEW B, 2004, 70 (24) : 1 - 8
  • [27] Deep Learning-Driven Simultaneous Layout Decomposition and Mask Optimization
    Zhong, Wei
    Hu, Shuxiang
    Ma, Yuzhe
    Yang, Haoyu
    Ma, Xiuyuan
    Yu, Bei
    PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [28] The Research on Deep Learning-Driven Dimensionality Reduction and Strain Prediction Techniques Based on Flight Parameter Data
    Huang, Wenbo
    Wang, Rui
    Zhang, Mengchuang
    Yin, Zhiping
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [29] Reinforcement learning-driven deep question generation with rich semantics
    Guan, Menghong
    Mondal, Subrota Kumar
    Dai, Hong-Ning
    Bao, Haiyong
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (02)
  • [30] Deep learning-driven regional drought assessment: an optimized perspective
    Chandrakant M. Kadam
    Udhav V. Bhosle
    Raghunath S. Holambe
    Earth Science Informatics, 2024, 17 : 1523 - 1537