Influence factors for ordering temperature of FePt nanoparticles

被引:0
|
作者
Li L. [1 ]
Qi W.-H. [1 ,2 ]
Wang T.-R. [1 ]
Peng H.-C. [1 ]
Du J. [3 ]
机构
[1] School of Materials Science and Engineering, Central South University, Changsha
[2] Key Laboratory of Non-Ferrous Materials Science and Engineering, Ministry of Education, Central South University, Changsha
[3] Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo
来源
Qi, Wei-Hong (qiwh216@csu.edu.cn) | 2018年 / Central South University of Technology卷 / 28期
基金
中国国家自然科学基金;
关键词
Nanoalloy; Order-disorder transition; Thermodynamics of material;
D O I
10.19476/j.ysxb.1004.0609.2018.02.11
中图分类号
学科分类号
摘要
The model for calculating the free energy of binary alloy was generalized, which can be used to study the ordering temperature of FePt nanoparticles with different shapes, sizes, constituents and ordering degrees. The results show that, in a specified shape, the ordering temperature of FePt nanoparticles decreases with the decrease of size. Fixed other conditions, the ordering temperature is the highest when the nanoparticles are spherical and the lowest when the nanoparticles are in regular tetrahedron. When the shape and size are specified, the ordering temperature of FePt nanoparticles decreases with the increase of initial ordering degree, and it also decreases with the component ratios of Pt and Fe deviating from the ideal composition of 1: 1.The more the component deviates, the more quickly the ordering temperature drops. © 2018, Science Press. All right reserved.
引用
收藏
页码:300 / 308
页数:8
相关论文
共 34 条
  • [21] Zotov N., Ludwig A., First-principles calculations of the elastic constants of Fe-Pt alloys, Intermetallics, 16, 1, pp. 113-118, (2008)
  • [22] Zhang J.-Q., Liu Z.-X., Binary diagram of EuCl<sub>3</sub>-KCl, The Chinese Journal of Nonferrous Metals, 12, 4, pp. 842-845, (2002)
  • [23] Yang B., Asta M., Mryasov O.N., Klemmer T.J., Chantrell R.W., Equilibrium Monte Carlo simulations of A1-L1<sub>0</sub> ordering in FePt nanoparticles, Scripta Materialia, 53, 4, pp. 417-422, (2005)
  • [24] Takahashi Y.K., Ohkubo T., Ohnuma M., Hono K., Size effect on the ordering of FePt granular films, Journal of Applied Physics, 93, 10, pp. 7166-7168, (2003)
  • [25] Elkins K.E., Vedantam T.S., Liu J.P., Zeng H., Sun S.H., Ding Y., Wang Z.L., Ultrafine FePt nanoparticles prepared by the chemical reduction method, Nano Letters, 3, 12, pp. 1647-1649, (2008)
  • [26] Nandwana V., Elkins K.E., Poudyal N., Chaubey G.S., Kazuaki Yano A., Liu J.P., Size and shape control of monodisperse FePt nanoparticles, Journal of Physical Chemistry C, 111, 11, pp. 4185-4189, (2010)
  • [27] Rong C.B., Poudyal N., Chaubey G.S., Nandwana V., Skomski R., Wu Y.Q., Kramer M.J., Liu J.P., Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles, Journal of Applied Physics, 102, 4, pp. 5544-5644, (2007)
  • [28] Yu A.C.C., Mizuno M., Sasaki Y., Inoue M., Kondo H., Ohta I., Djayaprawira D., Takahashi M., Fabrication of monodispersive FePt nanoparticle films stabilized on rigid substrates, Applied Physics Letters, 82, 24, pp. 4352-4354, (2003)
  • [29] Howard L.E., Nguyen H.L., Giblin S.R., Tanner B.K., Terry I., Hughes A.K., Evans J.S., A synthetic route to size-controlled fcc and fct FePt nanoparticles, Journal of the American Chemical Society, 127, 29, pp. 10140-10141, (2005)
  • [30] Medwal R., Sehdev N., Annapoorni S., Order-disorder investigation of hard magnetic nanostructured FePt alloy, Journal of Physics D Applied Physics, 45, 45, pp. 5604-5606, (2012)