Influence factors for ordering temperature of FePt nanoparticles

被引:0
|
作者
Li L. [1 ]
Qi W.-H. [1 ,2 ]
Wang T.-R. [1 ]
Peng H.-C. [1 ]
Du J. [3 ]
机构
[1] School of Materials Science and Engineering, Central South University, Changsha
[2] Key Laboratory of Non-Ferrous Materials Science and Engineering, Ministry of Education, Central South University, Changsha
[3] Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo
来源
Qi, Wei-Hong (qiwh216@csu.edu.cn) | 2018年 / Central South University of Technology卷 / 28期
基金
中国国家自然科学基金;
关键词
Nanoalloy; Order-disorder transition; Thermodynamics of material;
D O I
10.19476/j.ysxb.1004.0609.2018.02.11
中图分类号
学科分类号
摘要
The model for calculating the free energy of binary alloy was generalized, which can be used to study the ordering temperature of FePt nanoparticles with different shapes, sizes, constituents and ordering degrees. The results show that, in a specified shape, the ordering temperature of FePt nanoparticles decreases with the decrease of size. Fixed other conditions, the ordering temperature is the highest when the nanoparticles are spherical and the lowest when the nanoparticles are in regular tetrahedron. When the shape and size are specified, the ordering temperature of FePt nanoparticles decreases with the increase of initial ordering degree, and it also decreases with the component ratios of Pt and Fe deviating from the ideal composition of 1: 1.The more the component deviates, the more quickly the ordering temperature drops. © 2018, Science Press. All right reserved.
引用
收藏
页码:300 / 308
页数:8
相关论文
共 34 条
  • [1] Sun S., Murray C.B., Weller D., Folks L., Moser A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 31, 27, pp. 1989-1992, (2000)
  • [2] Xiang J., Chu Y.-Q., Zhou G.-Z., Guo Y.-T., Shen X.-Q., Electrospinning fabrication, characterization and magnetic properties of Co<sub>0.5</sub>Ni<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanofibers, The Chinese Journal of Nonferrous Metals, 21, 8, pp. 1944-1952, (2011)
  • [3] Yu H.Y., Sun H.Y., Feng S.Z., Gao F.J., Zhou H.J., Nie X.F., Sun Y.P., Microstructure and magnetic properties of granularFePt/(FePt)_(27)Ti_(73) films for ultrahigh-density recording media, Journal of Central South University, 12, 2, pp. 155-158, (2005)
  • [4] Delalande M., Guinel M.J.F., Allard L.F., Delattre A., Bris R.L., Samson Y., Bayleguillemaud P., Reiss P., L1<sub>0</sub> ordering of ultrasmall fept nanoparticles revealed by tem in situ annealing, Journal of Physical Chemistry C, 116, 12, pp. 6866-6872, (2012)
  • [5] Shu X.L., Chen Q., Chen Z.Y., Hu W.Y., Structural defects in L1<sub>0</sub> FePt by modified analytic embedded-atom method, Transactions of Nonferrous Metals Society of China, 16, pp. 2034-2037, (2006)
  • [6] Li Y.-J., Qi W.-H., Huang B.-Y., Wang M.-P., Stability of crystal structures of metallic nanoparticles and their cohesive energy, The Chinese Journal of Nonferrous Metals, 19, 3, pp. 543-548, (2009)
  • [7] Yang B., Asta M., Mryasov O.N., Klemmer T.J., Chantrell R.W., The nature of A1-L1<sub>0</sub> ordering transitions in alloy nanoparticles: A Monte Carlo study, Acta Materialia, 54, 16, pp. 4201-4211, (2006)
  • [8] Qi W.H., Wang M.P., Liu Q.H., Shape factor of nonspherical nanoparticles, Journal of Materials Science, 40, 9, pp. 2737-2739, (2005)
  • [9] Ller M., Albe K., Lattice Monte Carlo simulations of FePt nanoparticles: Influence of size, composition, and surface segregation on order-disorder phenomena, Physical Review B, 72, 9, (2005)
  • [10] Xiong S., Qi W., Huang B., Wang M., Wei L., Gibbs free energy and size-temperature phase diagram of hafnium nanoparticles, Journal of Physical Chemistry C, 115, 21, pp. 10365-10369, (2011)