Efficient separation of per- and polyfluoroalkyl substances (PFAS) from water by aminated polyacrylamide hydrogel foam

被引:0
|
作者
Xu, Yichen [1 ]
Yu, Xueru [2 ]
Wang, Xinhao [1 ]
Song, Yiqian [3 ]
Wang, Wenran [1 ]
Zhang, Ming [1 ,4 ]
Kong, Deyang [5 ]
Chen, Zhanghao [1 ]
Gu, Cheng [1 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[2] Nanjing Res Inst Ecol & Environm Protect, 175 Huju Rd, Nanjing 210013, Peoples R China
[3] Ctr Soil Pollut Control Shandong, Dept Ecol & Environm, Jinan 250012, Shandong, Peoples R China
[4] Nanjing Forestry Univ, Coll Biol & Environm, Dept Environm Engn, Nanjing 210037, Peoples R China
[5] Minist Ecol & Environm, Nanjing Inst Environm Sci, Key Lab Pesticide Environm Assessment & Pollut Co, Nanjing 210042, Peoples R China
基金
中国国家自然科学基金;
关键词
PFAS removal; Rapid adsorption; Aminated polyacrylamide; Crosslinked polymers; Adsorption mechanisms; PERFLUOROALKYL SUBSTANCES; ADSORPTION BEHAVIOR; SORPTION; POLYANILINE; COMPOSITE; REMOVAL; ACID;
D O I
10.1016/j.cej.2024.157833
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Emerging per- and polyfluoroalkyl substances (PFAS) are highly toxic chemicals with extraodinary stability in the aquatic environment. Highly efficient adsorbents are in urgent need to address the environmental challenges caused by PFAS. Herein, we developed a novel aminated foam adsorbent with high affinity for PFAS adsorption through polymerization, amination and pyrolyzation. For initial 1 mu g/L perfluorooctanoic acid (PFOA) solution, more than 97.9 % removal efficiency could be obatined with a rapid equilibration time of similar to 15 min. The elevated adsorption efficiency could be explained by the synergetic effect of electrostatic/hydrogen bonding and hydrophobic interaction, while the increase of specific surface area (SSA) also has a positive effect on PFOA adsorption. Furthermore, the sythesized polyacrylamide-polyaniline material (pyrolyzed at 301 degrees C, PAM-PANI-2) exhibited high adaptability to different environmental influencing factors, including pH and co-existed organic matters, and presented excellent adsorption removal ability for other common PFAS except for PFOA. Moreover, it is worth noting that this foam material has advantages in regeneration compared to traditional powder adsorbents, without complicated procedures such as centrifugation and filtration. These results indicate that aminated PAM polymers are promising adsorbents in remediations of trace PFAS-contaminated water, which can give new insights to the design and application of novel polymer materials of PFAS treatments.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [42] Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing
    Schymanski, Emma L.
    Zhang, Jian
    Thiessen, Paul A.
    Chirsir, Parviel
    Kondic, Todor
    Bolton, Evan E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (44) : 16918 - 16928
  • [43] Tools for Investigating the Expanding Per- and Polyfluoroalkyl Substances (PFAS) Universe
    Schwichtenberg, Trevor
    LCGC NORTH AMERICA, 2022, 40 (11) : 546 - 548
  • [44] Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS)
    Joseph, Kara M.
    Boatman, Anna K.
    Dodds, James N.
    Kirkwood-Donelson, Kaylie I.
    Ryan, Jack P.
    Zhang, Jian
    Thiessen, Paul A.
    Bolton, Evan E.
    Valdiviezo, Alan
    Sapozhnikova, Yelena
    Rusyn, Ivan
    Schymanski, Emma L.
    Baker, Erin S.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [45] Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)-A review
    Paris-Davila, Tamara
    Gaines, Linda G. T.
    Lucas, Katherine
    Nylander-French, Leena A.
    AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, 2023, 66 (05) : 393 - 410
  • [46] Per- and polyfluoroalkyl substances (PFAS) at the interface of biological and environmental systems
    Apul, Onur
    Howell, Caitlin
    Hatinoglu, M. Dilara
    BIOINTERPHASES, 2023, 18 (05)
  • [47] Electrochemical methods for treatment of per- and polyfluoroalkyl substances (PFAS): A review
    Tan, Benjamin Tze-Wei
    Abu Bakar, Noor Hana Hanif
    Lee, Hooi Ling
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [48] Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)-A review
    Al Amin, Md
    Sobhani, Zahra
    Liu, Yanju
    Dharmaraja, Raja
    Chadalavada, Sreenivasulu
    Naidu, Ravi
    Chalker, Justin M.
    Fang, Cheng
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2020, 19
  • [49] Hair determination of per- and polyfluoroalkyl substances (PFAS) in the Italian population
    Piva, E.
    Giorgetti, A.
    Ioime, P.
    Morini, L.
    Freni, F.
    Lo Faro, F.
    Pirani, F.
    Montisci, M.
    Fais, P.
    Pascali, J. P.
    TOXICOLOGY, 2021, 458
  • [50] Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment
    Zheng, Guomao
    Boor, Brandon E.
    Schreder, Erika
    Salamova, Amina
    ENVIRONMENTAL POLLUTION, 2020, 258