A generative model for fBm with deep ReLU neural networks

被引:0
|
作者
Allouche, Michaël [1 ]
Girard, Stéphane [2 ]
Gobet, Emmanuel [1 ]
机构
[1] CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau,91128, France
[2] Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble,38000, France
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Pathwise Explanation of ReLU Neural Networks
    Lim, Seongwoo
    Jo, Won
    Lee, Joohyung
    Choi, Jaesik
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [32] Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
    Nguyen, Quynh
    Mondelli, Marco
    Montufar, Guido
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [33] Density estimation using deep generative neural networks
    Liu, Qiao
    Xu, Jiaze
    Jiang, Rui
    Wong, Wing Hung
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (15)
  • [34] Deep generative neural networks for spectral image processing
    Mishra, Puneet
    ANALYTICA CHIMICA ACTA, 2022, 1191
  • [35] The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
    Zhang, Yuheng
    Jia, Ruoxi
    Pei, Hengzhi
    Wang, Wenxiao
    Li, Bo
    Song, Dawn
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 250 - 258
  • [36] An Efficient Explorative Sampling Considering the Generative Boundaries of Deep Generative Neural Networks
    Jeon, Giyoung
    Jeong, Haedong
    Choi, Jaesik
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4288 - 4295
  • [37] Constructive Deep ReLU Neural Network Approximation
    Lukas Herrmann
    Joost A. A. Opschoor
    Christoph Schwab
    Journal of Scientific Computing, 2022, 90
  • [38] Factor Augmented Sparse Throughput Deep ReLU Neural Networks for High Dimensional Regression
    Fan, Jianqing
    Gu, Yihong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2680 - 2694
  • [39] Learning the Ising model with generative neural networks
    D'Angelo, Francesco
    Bottcher, Lucas
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [40] Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
    Dinh Dung
    SBORNIK MATHEMATICS, 2023, 214 (04) : 479 - 515