Exploring generative adversarial networks and adversarial training

被引:0
|
作者
Sajeeda A. [1 ]
Hossain B.M.M. [1 ]
机构
[1] Institute of Information Technology, University of Dhaka, Dhaka
来源
关键词
Adversarial training; Deep learning; GANs; Generative adversarial networks; Generative modeling;
D O I
10.1016/j.ijcce.2022.03.002
中图分类号
学科分类号
摘要
Recognized as a realistic image generator, Generative Adversarial Network (GAN) occupies a progressive section in deep learning. Using generative modeling, the underlying generator model learns the real target distribution and outputs fake samples from the generated replica distribution. The discriminator attempts to distinguish the fake and the real samples and sends feedback to the generator so that the generator can improve the fake samples. Recently, GANs have been competing with the state-of-the-art in various tasks including image processing, missing data imputation, text-to-image translation and adversarial example generation. However, the architecture suffers from training instability, resulting in problems like non-convergence, mode collapse and vanishing gradients. The research community has been studying and devising modified architectures, alternative loss functions and techniques to address these concerns. A section of publications has studied Adversarial Training, alongside GANs. This review covers the existing works on the instability of GANs from square one and a portion of recent publications to illustrate the trend of research. It also gives insight on studies exploring adversarial attacks and research discussing Adversarial Attacks with GANs. To put it more eloquently, this study intends to guide researchers interested in studying improvisations made to GANs for stable training, in the presence of Adversarial Attacks. © 2022
引用
收藏
页码:78 / 89
页数:11
相关论文
共 50 条
  • [31] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [32] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [33] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [34] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [35] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [36] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [37] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [38] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [39] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [40] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218