CFD Market Maker’s Policy Optimization using Artificial Market Simulation and Deep Reinforcement Learning

被引:0
|
作者
Hashimoto, Ryuji [1 ]
Izumi, Kiyoshi [2 ]
Murayama, Yuri [2 ]
Yamamura, Yudai [2 ]
Shishido, Yuki [2 ]
机构
[1] School of Engneering, The University of Tokyo, Japan
[2] Daiwa Securities Co. Ltd., Japan
关键词
26;
D O I
10.1527/TJSAI.39-4_FIN23-F
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Consensus Algorithms and Deep Reinforcement Learning in Energy Market: A Review
    Jogunola, Olamide
    Adebisi, Bamidele
    Ikpehai, Augustine
    Popoola, Segun, I
    Gui, Guan
    Gacanin, Haris
    Ci, Song
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4211 - 4227
  • [22] Quantitative Trading on Stock Market Based on Deep Reinforcement Learning
    Wu, Jia
    Wang, Chen
    Xiong, Lidong
    Sun, Hongyong
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [23] Modular production control using deep reinforcement learning: proximal policy optimization
    Mayer, Sebastian
    Classen, Tobias
    Endisch, Christian
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (08) : 2335 - 2351
  • [24] Modular production control using deep reinforcement learning: proximal policy optimization
    Sebastian Mayer
    Tobias Classen
    Christian Endisch
    Journal of Intelligent Manufacturing, 2021, 32 : 2335 - 2351
  • [25] BUILDING AN ARTIFICIAL STOCK MARKET POPULATED BY REINFORCEMENT-LEARNING AGENTS
    Rutkauskas, Aleksandras Vytautas
    Ramanauskas, Tomas
    JOURNAL OF BUSINESS ECONOMICS AND MANAGEMENT, 2009, 10 (04) : 329 - 341
  • [26] Management and Policy Modeling of the Market Using Artificial Intelligence
    Fan, Qunpeng
    SUSTAINABILITY, 2022, 14 (14)
  • [27] Multi-agent Deep Reinforcement Learning for Distributed Energy Management and Strategy Optimization of Microgrid Market
    Fang, Xiaohan
    Zhao, Qiang
    Wang, Jinkuan
    Han, Yinghua
    Li, Yuchun
    SUSTAINABLE CITIES AND SOCIETY, 2021, 74
  • [28] STOCK MARKET ANALYSIS AND PRICE PREDICTION USING DEEP LEARNING AND ARTIFICIAL NEURAL NETWORKS
    Medic, Tomislav
    Pejic Bach, Mirjana
    Jakovic, Bozidar
    PROCEEDINGS OF FEB ZAGREB 11TH INTERNATIONAL ODYSSEY CONFERENCE ON ECONOMICS AND BUSINESS, 2020, 2 (01): : 450 - 462
  • [29] A convolutional deep reinforcement learning architecture for an emerging stock market analysis
    Hadizadeh, Anita
    Tarokh, Mohammad Jafar
    Ghazani, Majid Mirzaee
    DECISION SCIENCE LETTERS, 2025, 14 (02) : 313 - 326
  • [30] Data Driven Solution to Market Equilibrium via Deep Reinforcement Learning
    Wen, Lin
    Wang, Jianxiao
    Lin, Li
    Zou, Yang
    Gao, Feng
    Hong, Qiteng
    2024 IEEE 2ND INTERNATIONAL CONFERENCE ON POWER SCIENCE AND TECHNOLOGY, ICPST 2024, 2024, : 1422 - 1426